Skip to content

Commit

Permalink
Merge pull request #5 from LennartMorlock/master
Browse files Browse the repository at this point in the history
Update urbs technology equations notation
  • Loading branch information
sonercandas committed Jun 17, 2020
2 parents 2b970af + a1774df commit 4946f13
Showing 1 changed file with 13 additions and 13 deletions.
26 changes: 13 additions & 13 deletions doc/source/frameworks/technologies.rst
Expand Up @@ -36,12 +36,12 @@ Note - the full load hour is used to generate the profile (the resulting profile

Urbs
''''''''
Uses generic process equations. Only difference is that additionally the input depends on the timeseries of the corresponding commodity.
Uses generic process equations. Only difference is that additionally the input depends on the timeseries of the corresponding commodity input/maxinput ratio.


.. math::
&\epsilon^{\text{in}}_{t,y,r,g,c}=\kappa^{\text{capa}}_{y,r,s}\cdot \gamma^{\text{supim}}_{r,c,y,t}\cdot \Delta t \\
&\vu_{t,y,r,g,c}=\kk_{y,r,g}\cdot \gamma^{\text{supim}}_{r,c,y,t}\cdot \Delta t \\
&\forall t \in T_m, ~y \in Y, ~r \in R, ~g \in G, ~c \in C^{\text{supIm}}
Expand Down Expand Up @@ -199,7 +199,7 @@ urbs
''''

.. math::
&\epsilon^{\text{con}}_{t,y,r,s,c}=\epsilon^{\text{con}}_{(t-1),y,r,s,c}\cdot (1-d_{y,r,s,c})^{\Delta t}+\gamma^{\text{in}}_{y,r,s,c}\cdot \epsilon^{\text{in}}_{t,y,r,s,c}- \frac{\epsilon^{\text{out}}_{t,y,r,s,c}}{\gamma^{\text{out}}_{y,r,s,c}}\\
&\vsv_{t,y,r,s,c}=\vsv_{(t-1),y,r,s,c}\cdot (1-\gL_{y,r,s,c})^{\Delta t}+\gi_{y,r,s,c}\cdot \vsl_{t,y,r,s,c}- \frac{\vsu_{t,y,r,s,c}}{\go_{y,r,s,c}}\\
&\forall t\in T_m,~y\in Y,~r\in R,~s\in S,~c\in C
GENeSYS-MOD
Expand Down Expand Up @@ -322,7 +322,7 @@ urbs

.. math::
&\epsilon^{\text{trans,out}}_{t,y,r_{in},r_{out},x,c}=\epsilon^{\text{trans,in}}_{t,y,r_{in},r_{out},x,c}\cdot \gamma_{y,r_{in},r_{out},x,c}\\
& v^{\text{trans,out}}_{t,y,r_{in},r_{out},x,c}= v^{\text{trans,in}}_{t,y,r_{in},r_{out},x,c}\cdot \gamma^{\text{trans}}_{y,r_{in},r_{out},x,c}\\
&\forall t\in T_m,~y\in Y,~r_{in}\in R,~r_{out}\in R,~x\in X,~c\in C
Expand All @@ -336,28 +336,28 @@ Every generic process is described by the following equations:

.. math::
&\epsilon^{\text{in}}_{t,y,r,g,c}=\gamma^{\text{in}}_{y,g,c} \cdot \tau_{t,y,r,g} \\
&\epsilon^{\text{out}}_{t,y,r,g,c}=\gamma^{\text{out}}_{y,g,c} \cdot \tau_{t,y,r,g} \\
&\tau_{t,y,r,g}\leq \Delta t \cdot \kappa^{\text{capa}}_{y,r,g} \\
&\vu_{t,y,r,g,c}=\gi_{y,g,c} \cdot \tau_{t,y,r,g} \\
&\vg_{t,y,r,g,c}=\go_{y,g,c} \cdot \tau_{t,y,r,g} \\
&\tau_{t,y,r,g}\leq \Delta t \cdot \kk_{y,r,g} \\
&\forall t \in T_m, y \in Y, ~r \in R, ~g \in G, ~c \in C
Processes can also have a maximum change in throughput in a single time step, which is modeled by:

.. math::
&\tau_{t-1,y,r,g} - \kappa^{\text{capa}}_{y,r,g} \cdot \gamma^{\Delta\tau^{max}}_{y,r,g} \cdot \Delta t \leq \tau_{t,y,r,g} \\
&\tau_{t-1,y,r,g} + \kappa^{\text{capa}}_{y,r,g} \cdot \gamma^{\Delta\tau^{max}}_{y,r,g} \cdot \Delta t \geq \tau_{t,y,r,g} \\
&\tau_{t-1,y,r,g} - \kk_{y,r,g} \cdot \gamma^{\Delta\tau^{max}}_{y,r,g} \cdot \Delta t \leq \tau_{t,y,r,g} \\
&\tau_{t-1,y,r,g} + \kk_{y,r,g} \cdot \gamma^{\Delta\tau^{max}}_{y,r,g} \cdot \Delta t \geq \tau_{t,y,r,g} \\
&\forall t \in T_m, y \in Y, ~r \in R, ~g \in G, ~c \in C
Some processes also have a minimum input and a different efficieny when operating with partial input which is modeled by:
Some processes also have a minimum throughput ratio (minimum throughput/maximum throughput) for operation and a different efficieny when operating with less than maximum throughput:

.. math::
&\tau_{t,y,r,g} \geq \kappa^{\text{capa}}_{y,r,g} \cdot \gamma^{\text{min}}_{y,r,g} \cdot \Delta t \\
&\epsilon^{\text{in}}_{t,y,r,g,c}=\Delta t \cdot \kappa^{\text{capa}}_{y,r,g} \cdot \frac{\gamma^{\text{min}}_{y,r,g} \cdot (\gamma^{\text{in,min}}_{y,g,c}-\gamma^{\text{in}}_{y,g,c})}{1-\gamma^{\text{min}}_{y,r,g}} + \tau_{t,y,r,g} \cdot \frac{\gamma^{\text{in}}_{y,g,c}-\gamma^{\text{min}}_{y,r,g} \cdot \gamma^{\text{in,min}}_{y,g,c}}{1-\gamma^{\text{min}}_{y,r,g}}\\
&\epsilon^{\text{out}}_{t,y,r,g,c}=\Delta t \cdot \kappa^{\text{capa}}_{y,r,g} \cdot \frac{\gamma^{\text{min}}_{y,r,g} \cdot (\gamma^{\text{out,min}}_{y,g,c}-\gamma^{\text{out}}_{y,g,c})}{1-\gamma^{\text{min}}_{y,r,g}} + \tau_{t,y,r,g} \cdot \frac{\gamma^{\text{out}}_{y,g,c}-\gamma^{\text{min}}_{y,r,g} \cdot \gamma^{\text{out,min}}_{y,g,c}}{1-\gamma^{\text{min}}_{y,r,g}}\\
&\tau_{t,y,r,g} \geq \kk_{y,r,g} \cdot \gamma^{\text{min}}_{y,r,g} \cdot \Delta t \\
&\vu_{t,y,r,g,c}=\Delta t \cdot \kk_{y,r,g} \cdot \frac{\gamma^{\text{min}}_{y,r,g} \cdot (\gamma^{\text{in,gen,min}}_{y,g,c}-\gi_{y,g,c})}{1-\gamma^{\text{min}}_{y,r,g}} + \tau_{t,y,r,g} \cdot \frac{\gi_{y,g,c}-\gamma^{\text{min}}_{y,r,g} \cdot \gamma^{\text{in,gen,min}}_{y,g,c}}{1-\gamma^{\text{min}}_{y,r,g}}\\
&\vg_{t,y,r,g,c}=\Delta t \cdot \kk_{y,r,g} \cdot \frac{\gamma^{\text{min}}_{y,r,g} \cdot (\gamma^{\text{out,gen,min}}_{y,g,c}-\go_{y,g,c})}{1-\gamma^{\text{min}}_{y,r,g}} + \tau_{t,y,r,g} \cdot \frac{\go_{y,g,c}-\gamma^{\text{min}}_{y,r,g} \cdot \gamma^{\text{out,gen,min}}_{y,g,c}}{1-\gamma^{\text{min}}_{y,r,g}}\\
&\forall t \in T_m, y \in Y, ~r \in R, ~g \in G, ~c \in C
Expand Down

0 comments on commit 4946f13

Please sign in to comment.