Skip to content

Latest commit

 

History

History
447 lines (354 loc) · 15.4 KB

File metadata and controls

447 lines (354 loc) · 15.4 KB

Creating PyTorch Distributed Workloads

Write your training code:

For this example, the code to run was inspired from an example found here

Note that MASTER_ADDR, MASTER_PORT, WORLD_SIZE, RANK, and LOCAL_RANK are environment variables that will automatically be set.

# Copyright (c) 2017 Facebook, Inc. All rights reserved.
# BSD 3-Clause License
#
# Script adapted from:
# https://github.com/Azure/azureml-examples/blob/main/python-sdk/workflows/train/pytorch/cifar-distributed/src/train.py
# ==============================================================================


import datetime
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os, argparse

# define network architecture
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.conv3 = nn.Conv2d(64, 128, 3)
        self.fc1 = nn.Linear(128 * 6 * 6, 120)
        self.dropout = nn.Dropout(p=0.2)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = x.view(-1, 128 * 6 * 6)
        x = self.dropout(F.relu(self.fc1(x)))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


# define functions
def train(train_loader, model, criterion, optimizer, epoch, device, print_freq, rank):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data[0].to(device), data[1].to(device)

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % print_freq == 0:  # print every print_freq mini-batches
            print(
                "Rank %d: [%d, %5d] loss: %.3f"
                % (rank, epoch + 1, i + 1, running_loss / print_freq)
            )
            running_loss = 0.0


def evaluate(test_loader, model, device):
    classes = (
        "plane",
        "car",
        "bird",
        "cat",
        "deer",
        "dog",
        "frog",
        "horse",
        "ship",
        "truck",
    )

    model.eval()

    correct = 0
    total = 0
    class_correct = list(0.0 for i in range(10))
    class_total = list(0.0 for i in range(10))
    with torch.no_grad():
        for data in test_loader:
            images, labels = data[0].to(device), data[1].to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
            c = (predicted == labels).squeeze()
            for i in range(10):
                label = labels[i]
                class_correct[label] += c[i].item()
                class_total[label] += 1

    # print total test set accuracy
    print(
        "Accuracy of the network on the 10000 test images: %d %%"
        % (100 * correct / total)
    )

    # print test accuracy for each of the classes
    for i in range(10):
        print(
            "Accuracy of %5s : %2d %%"
            % (classes[i], 100 * class_correct[i] / class_total[i])
        )


def main(args):
    # get PyTorch environment variables
    world_size = int(os.environ["WORLD_SIZE"])
    rank = int(os.environ["RANK"])
    local_rank = int(os.environ["LOCAL_RANK"])

    distributed = world_size > 1

    if torch.cuda.is_available():
        print("CUDA is available.")
    else:
        print("CUDA is not available.")

    # set device
    if distributed:
        if torch.cuda.is_available():
            device = torch.device("cuda", local_rank)
        else:
            device = torch.device("cpu")
    else:
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # initialize distributed process group using default env:// method
    if distributed:
        torch.distributed.init_process_group(
            backend=args.backend,
            timeout=datetime.timedelta(minutes=args.timeout)
        )

    # define train and test dataset DataLoaders
    transform = transforms.Compose(
        [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
    )

    train_set = torchvision.datasets.CIFAR10(
        root=args.data_dir, train=True, download=True, transform=transform
    )

    if distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_set,
        batch_size=args.batch_size,
        shuffle=(train_sampler is None),
        num_workers=args.workers,
        sampler=train_sampler,
    )

    test_set = torchvision.datasets.CIFAR10(
        root=args.data_dir, train=False, download=True, transform=transform
    )
    test_loader = torch.utils.data.DataLoader(
        test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers
    )

    model = Net().to(device)

    # wrap model with DDP
    if distributed:
        if torch.cuda.is_available():
            model = nn.parallel.DistributedDataParallel(
                model, device_ids=[local_rank], output_device=local_rank
            )
        else:
            model = nn.parallel.DistributedDataParallel(model)

    # define loss function and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(
        model.parameters(), lr=args.learning_rate, momentum=args.momentum
    )

    # train the model
    for epoch in range(args.epochs):
        print("Rank %d: Starting epoch %d" % (rank, epoch))
        if distributed:
            train_sampler.set_epoch(epoch)
        model.train()
        train(
            train_loader,
            model,
            criterion,
            optimizer,
            epoch,
            device,
            args.print_freq,
            rank,
        )

    print("Rank %d: Finished Training" % (rank))

    if not distributed or rank == 0:
        os.makedirs(args.output_dir, exist_ok=True)
        model_path = os.path.join(args.output_dir, "cifar_net.pt")
        torch.save(model.state_dict(), model_path)

        # evaluate on full test dataset
        evaluate(test_loader, model, device)


# run script
if __name__ == "__main__":
    # setup argparse
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data-dir", type=str, help="directory containing CIFAR-10 dataset"
    )
    parser.add_argument("--epochs", default=10, type=int, help="number of epochs")
    parser.add_argument(
        "--batch-size",
        default=16,
        type=int,
        help="mini batch size for each gpu/process",
    )
    parser.add_argument(
        "--workers",
        default=2,
        type=int,
        help="number of data loading workers for each gpu/process",
    )
    parser.add_argument(
        "--learning-rate", default=0.001, type=float, help="learning rate"
    )
    parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
    parser.add_argument(
        "--output-dir", default="outputs", type=str, help="directory to save model to"
    )
    parser.add_argument(
        "--print-freq",
        default=200,
        type=int,
        help="frequency of printing training statistics",
    )
    parser.add_argument(
        "--backend", default="gloo", type=str,
        help="distributed communication backend, should be gloo, nccl or mpi"
    )
    parser.add_argument(
        "--timeout", default=30, type=int,
        help="timeout in minutes for waiting for the initialization of distributed process group."
    )
    args = parser.parse_args()

    # call main function
    main(args)

Initialize a distributed-training folder:

At this point you have create a training file (or files) - train.py in the above example. Now running the command below will download the artifacts required for building the docker image. The artifacts will be saved into the oci_dist_training_artifacts/pytorch/v1 directory under your current working directory.

ads opctl distributed-training init --framework pytorch --version v1

Containerize your code and build container:

Before you can build the image, you must set the following environment variables:

Specify image name and tag

export IMAGE_NAME=<region.ocir.io/my-tenancy/image-name>
export TAG=latest

Build the container image.

ads opctl distributed-training build-image \
    -t $TAG \
    -reg $IMAGE_NAME \
    -df oci_dist_training_artifacts/pytorch/v1/Dockerfile

The code is assumed to be in the current working directory. To override the source code directory, use the -s flag and specify the code dir. This folder should be within the current working directory.

ads opctl distributed-training build-image \
    -t $TAG \
    -reg $IMAGE_NAME \
     -df oci_dist_training_artifacts/horovod/v1/oci_dist_training_artifacts/pytorch/v1/Dockerfile
    -s <code_dir>

If you are behind proxy, ads opctl will automatically use your proxy settings (defined via no_proxy, http_proxy and https_proxy).

Define your workload yaml:

The yaml file is a declarative way to express the workload. Following is the YAML for running the example code, you will need to replace the values in the spec sections for your project:

  • infrastructure contains spec for OCI Data Science Jobs. Here you need to specify a subnet that allows communications between nodes. The VM.GPU2.1 shape is used in this example.
  • cluster contains spec for the image you built and a working directory on OCI object storage, which will be used by job runs to shared internal configurations. Environment variables specified in the cluster.spec.config will be available in all nodes. Here the NCCL_ASYNC_ERROR_HANDLING is used to enable the timeout for NCCL backend. The job runs will be terminated if the nodes failed to connect to each other in certain minutes as specified in your training code when calling init_process_group().
  • runtime contains spec for the name of your training script, and the command line arguments for running the script. Here the nccl backend is used for communications between GPUs. For CPU training, you can use the gloo backend. The timeout argument specify the maximum minutes for the nodes to wait when calling init_process_group(). This is useful for preventing the job runs to wait forever in case of node failure.
kind: distributed
apiVersion: v1.0
spec:
  infrastructure:
    kind: infrastructure
    type: dataScienceJob
    apiVersion: v1.0
    spec:
      projectId: oci.xxxx.<project_ocid>
      compartmentId: oci.xxxx.<compartment_ocid>
      displayName: PyTorch-Distributed
      logGroupId: oci.xxxx.<log_group_ocid>
      logId: oci.xxx.<log_ocid>
      subnetId: oci.xxxx.<subnet-ocid>
      shapeName: VM.GPU2.1
      blockStorageSize: 50
  cluster:
    kind: pytorch
    apiVersion: v1.0
    spec:
      image: <region.ocir.io/my-tenancy/image-name>
      workDir: "oci://my-bucket@my-namespace/pytorch/distributed"
      config:
        env:
          - name: NCCL_ASYNC_ERROR_HANDLING
            value: '1'
      main:
        name: PyTorch-Distributed-main
        replicas: 1
      worker:
        name: PyTorch-Distributed-worker
        replicas: 3
  runtime:
    kind: python
    apiVersion: v1.0
    spec:
      entryPoint: "train.py"
      args:
        - --data-dir
        - /home/datascience/data
        - --output-dir
        - /home/datascience/outputs
        - --backend
        - gloo
        - --timeout
        - 5

Use ads opctl to create the cluster infrastructure and dry-run the workload:

ads opctl run -f train.yaml --dry-run

the output from the dry run will show all the actions and infrastructure configuration.

Use ads opctl to create the cluster infrastructure and run the workload:

model_path = os.path.join(os.environ.get("OCI__SYNC_DIR"),"model.pt")
torch.save(model, model_path)

Profiling

You may want to profile your training setup for optimization/performance tuning. Profiling typically provides a detailed analysis of cpu utilization, gpu utilization, top cuda kernels, top operators etc. You can choose to profile your training setup using the native Pytorch profiler or using a third party profiler such as Nvidia Nsights.

Profiling using Pytorch Profiler

Pytorch Profiler is a native offering from Pytorch for Pytorch performance profiling. Profiling is invoked using code instrumentation using the api torch.profiler.profile.

Refer this link for changes that you need to do in your training script for instrumentation. You should choose the OCI__SYNC_DIR directory to save the profiling logs. For example:

prof = torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU,torch.profiler.ProfilerActivity.CUDA],
      schedule=torch.profiler.schedule(
          wait=1,
          warmup=1,
          active=3,
          repeat=1),
      on_trace_ready=torch.profiler.tensorboard_trace_handler(os.environ.get("OCI__SYNC_DIR") + "/logs"),
      with_stack=False)
prof.start()

# training code
prof.end()

Also, the sync feature SYNC_ARTIFACTS should be enabled '1' to sync the profiling logs to the configured object storage.

You would also need to install the Pytorch Tensorboard Plugin.

pip install torch-tb-profiler

Thereafter, use Tensorboard to view logs. Refer the Tensorboard setup <../../tensorboard/tensorboard> for set-up on your computer.