Skip to content

parlab-tuwien/mpi-datatybe

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
src
 
 
 
 
 
 
 
 
 
 

MPI-Datatybe – MPI Datatype Benchmark

Introduction

The MPI-Datatybe Benchmark is a tool for measuring the latency of MPI communication operations with unstructured data, either described as derived datatypes or packed into contiguous buffers using the MPI_Pack/MPI_Unpack operations.

Installation

Prerequisites

  • an MPI library
  • CMake (version >= 2.6)
  • GSL libraries
  • Python 2.7
  • Git

Basic build

The build script includes the following steps:

  • it creates a build directory, in which it either downloads the ReproMPI benchmark from a git reporsitory, or it copies the code from a specified path
  • the MPI-Datatybe benchmark code is generated in the build directory, by replacing ReproMPI-specific tags in the code with actual benchmarking code (e.g., process synchronization calls, time measurement calls); a CmakeLists.txt file and additional CMake helper files are also generated to allow the code to be compiled
  • ReproMPI and MPI-Datatybe are both configured through calls to cmake
  • Both codes are compiled

The default build configuration is stored in config/build.conf file.

To build the code using the default configuration, run:

cd $BENCHMARK_PATH
./build.py all 

For specific configuration options check the Benchmark Configuration section.

Running the MPI-Datatybe Benchmark

MPI-Datatybe is designed to benchmark the latency of one MPI communication operation (MPI_Bcast, MPI_Allgather, or a Ping-Pong operation based on MPI_Send and MPI_Recv). The latency is measured for a given data size and a layout described using one of the following predefined derived datatypes:

  • Basic derived datatypes
    • tiled - A contiguous unit of A elements with a stride of B elements, with B > A
    • block - Two contiguous units of A elements with alternating strides B_1 and B_2
    • bucket - Two alternating, contiguous units of A_1 and A_2 elements, with a regular stride of B elements
    • alternating - Two alternating, contiguous units of A_1 and A_2 elements with strides B_1 and B_2, respectively
  • Predefined MPI datatypes (e.g., MPI_INT, MPI_CHAR)
    • basetype
  • Contiguous datatype describing c contiguous repetitions of one of the four basic datatypes
    • contig_type
  • Additional derived datatypes
    • tiled_heterogeneous
    • tiled_struct
    • tiled_vector
    • vector_tiled
    • tiled_struct_indexed_all
    • tiled_struct_indexed_Sblocks
    • blocks
    • block_indexed
    • alternating_repeated
    • alternating_struct
    • alternating_indexed
    • alternating_indexed_fixed
    • contig_alternating_indexed_fixed
    • alternating_aligned
    • rowcol_full_indexed
    • rowcol_contiguous_and_indexed
    • rowcol_struct

Details about each of these datatypes can be found in the following papers:

  • Alexandra Carpen-Amarie, Sascha Hunold, Jesper Larsson Träff, “On the Expected and Observed Communication Performance with MPI Derived Datatypes”, EuroMPI 2016, pages 108-120
  • Alexandra Carpen-Amarie, Sascha Hunold, Jesper Larsson Träff, “On Expected and Observed Communication Performance with MPI Derived Datatypes”, Parallel Computing, 2017

The implementation of the derived datatypes can be found in:

  • src/perftypes.c

Command-line Options

The required command-line arguments to run the benchmark can be divided into two groups.

Datatype-specific Parameters

Each of these parameters can be specified as a key-value pair: –param=<key>:<value>

The following parameters are required:

  • –param=nbytes_list:<list of “/”-separated data sizes> - list of data sizes to be used when benchmarking the specified data layout and operation
  • –param=b:<basetype> - basic predefined MPI type to be used as a building block for the derived datatypes. Accepted values: MPI_CHAR, MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_SHORT, MPI_BYTE
  • –param=pattern:<operation> - communication pattern to be benchmarked. Accepted values: bcast, allgather, pingpong
  • –param=root:<process_id> - root process for the broadcast pattern or send process for the ping-pong operation
  • –param=test_type:<type> - select communication based on derived datatypes or on contiguous buffers obtained by applying MPI_Pack/MPI_Unpack to the non-contiguous data layouts. Accepted values: datatype, pack
  • –param=layout:<derived_datatype> - derived datatype to be used for communication.
  • layout-specific parameters
    • –param=layout:tiled –params=A:<nelements> –params=B:<nelements>
    • –param=layout:bucket –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements>
    • –param=layout:block –params=A:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:alternating –params=A1:<nelements> –params=A2:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:basetype
    • –param=layout:tiled_heterogeneous –params=A:<nelements> –params=B:<nelements> –params=c:<nbasetypes> –params=blist:<list of “/”-separated basetypes>
    • –param=layout:tiled_struct –params=A:<nelements> –params=B:<nelements> –params=S1:<nblocks> –params=S2:<nblocks>
    • –param=layout:tiled_vector –params=A:<nelements> –params=B:<nelements>
    • –param=layout:vector_tiled –params=A:<nelements> –params=B:<nelements> –params=S:<nblocks>
    • –param=layout:tiled_struct_indexed_all –params=A:<nelements> –params=B:<nelements>
    • –param=layout:tiled_struct_indexed_Sblocks –params=A:<nelements> –params=B:<nelements> –params=S:<nblocks>
    • –param=layout:blocks –params=A:<nelements> –params=B:<nelements> –params=l:<nblocks>
    • –param=layout:block_indexed –params=A:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:alternating_repeated –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements>
    • –param=layout:alternating_struct –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements>
    • –param=layout:alternating_indexed –params=A1:<nelements> –params=A2:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:alternating_indexed_fixed –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements> –params=S:<nblocks>
    • –param=layout:contig_alternating_indexed_fixed –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements> –params=S:<nblocks>
    • –param=layout:alternating_aligned –params=A1:<nelements> –params=A2:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:rowcol_full_indexed –params=A:<nelements>
    • –param=layout:rowcol_contiguous_and_indexed –params=A:<nelements>
    • –param=layout:rowcol_struct –params=A:<nelements>
    • –param=layout:contig_type –param=subtype:<basic_datatype> <basic_datatype_parameters>
      • the subtype has to be one of the four basic datatypes tiled, block, bucket, or alternating
      • the <basic_datatype_parameters> are specific to each layout as shown above, e.g., for the tiled subtype:
        • –param=layout:contig_type –param=subtype:tiled –params=A:<nelements> –params=B:<nelements>

Run-time Measurement Parameters

  • –nrep=<nrep> set number of repetitions for each measurement
  • –summary=<args> list of comma-separated data summarizing methods (mean, median, min, max), e.g., --summary=mean,max. Instead of printing the run-time measured for each repetition, the benchmark will only output one summarized value when this argument is used
  • -v print the individual run-times measured for each process
  • additional parameters that depend on the ReproMPI configuration
    • parameters Related to the Window-based Synchronization
      • –window-size=<win> window size in microseconds for window-based synchronization
      • –fitpoints=<nfit> number of fitpoints (default: 20) - used by the HCA or JK synchronization methods
      • –exchanges=<nexc> number of exchanges (default: 10) - used by the HCA or JK synchronization methods

For more details about the benchmarking parameters, please check the ReproMPI README file (https://github.com/hunsa/reprompi).

Benchmark Configuration

The build script relies on several parameters to further customize the benchmark configuration:

  • –git GIT - URL or local path to git repository (a path to the ReproMPI code directory on the local machine can also be provided instead of the path to a repository)
  • –sha1 SHA1 - commit SHA1 to use (not needed if a local path is specified)
  • –synctype {mpi_barrier,dissemination_barrier,hca,jk,skampi} - select process synchronization method in ReproMPI [default: MPI_Barrier]
  • –compilertype {cray,bgq,intel,default} - select compiler [default: mpicc needs to be available in the path]
  • –rdtscp - enable RDTSCP-based time measurement in ReproMPI
  • –cpufreq CPUFREQ - set maximum CPU frequency in MHz (always needed when RDTSCP-based timing is enabled) [default: 2300 MHz]

MPI libraries and compilers

MPI-Datatybe and ReproMPI provide a set of configuration files for commonly-used machines. To use a different compiler, run the build script with the configure option, then manually modify the CMakeLists.txt files in both benchmarks to match the new requirements, and re-run cmake.

For more details about the compiler and MPI library configuration, please check the ReproMPI README file (https://github.com/hunsa/reprompi).

The compile option can then be used to compile both codes.

About

MPI Datatype Benchmark

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published