Skip to content
Go to file

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

MPI-Datatybe – MPI Datatype Benchmark


The MPI-Datatybe Benchmark is a tool for measuring the latency of MPI communication operations with unstructured data, either described as derived datatypes or packed into contiguous buffers using the MPI_Pack/MPI_Unpack operations.



  • an MPI library
  • CMake (version >= 2.6)
  • GSL libraries
  • Python 2.7
  • Git

Basic build

The build script includes the following steps:

  • it creates a build directory, in which it either downloads the ReproMPI benchmark from a git reporsitory, or it copies the code from a specified path
  • the MPI-Datatybe benchmark code is generated in the build directory, by replacing ReproMPI-specific tags in the code with actual benchmarking code (e.g., process synchronization calls, time measurement calls); a CmakeLists.txt file and additional CMake helper files are also generated to allow the code to be compiled
  • ReproMPI and MPI-Datatybe are both configured through calls to cmake
  • Both codes are compiled

The default build configuration is stored in config/build.conf file.

To build the code using the default configuration, run:

./ all 

For specific configuration options check the Benchmark Configuration section.

Running the MPI-Datatybe Benchmark

MPI-Datatybe is designed to benchmark the latency of one MPI communication operation (MPI_Bcast, MPI_Allgather, or a Ping-Pong operation based on MPI_Send and MPI_Recv). The latency is measured for a given data size and a layout described using one of the following predefined derived datatypes:

  • Basic derived datatypes
    • tiled - A contiguous unit of A elements with a stride of B elements, with B > A
    • block - Two contiguous units of A elements with alternating strides B_1 and B_2
    • bucket - Two alternating, contiguous units of A_1 and A_2 elements, with a regular stride of B elements
    • alternating - Two alternating, contiguous units of A_1 and A_2 elements with strides B_1 and B_2, respectively
  • Predefined MPI datatypes (e.g., MPI_INT, MPI_CHAR)
    • basetype
  • Contiguous datatype describing c contiguous repetitions of one of the four basic datatypes
    • contig_type
  • Additional derived datatypes
    • tiled_heterogeneous
    • tiled_struct
    • tiled_vector
    • vector_tiled
    • tiled_struct_indexed_all
    • tiled_struct_indexed_Sblocks
    • blocks
    • block_indexed
    • alternating_repeated
    • alternating_struct
    • alternating_indexed
    • alternating_indexed_fixed
    • contig_alternating_indexed_fixed
    • alternating_aligned
    • rowcol_full_indexed
    • rowcol_contiguous_and_indexed
    • rowcol_struct

Details about each of these datatypes can be found in the following papers:

  • Alexandra Carpen-Amarie, Sascha Hunold, Jesper Larsson Träff, “On the Expected and Observed Communication Performance with MPI Derived Datatypes”, EuroMPI 2016, pages 108-120
  • Alexandra Carpen-Amarie, Sascha Hunold, Jesper Larsson Träff, “On Expected and Observed Communication Performance with MPI Derived Datatypes”, Parallel Computing, 2017

The implementation of the derived datatypes can be found in:

  • src/perftypes.c

Command-line Options

The required command-line arguments to run the benchmark can be divided into two groups.

Datatype-specific Parameters

Each of these parameters can be specified as a key-value pair: –param=<key>:<value>

The following parameters are required:

  • –param=nbytes_list:<list of “/”-separated data sizes> - list of data sizes to be used when benchmarking the specified data layout and operation
  • –param=b:<basetype> - basic predefined MPI type to be used as a building block for the derived datatypes. Accepted values: MPI_CHAR, MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_SHORT, MPI_BYTE
  • –param=pattern:<operation> - communication pattern to be benchmarked. Accepted values: bcast, allgather, pingpong
  • –param=root:<process_id> - root process for the broadcast pattern or send process for the ping-pong operation
  • –param=test_type:<type> - select communication based on derived datatypes or on contiguous buffers obtained by applying MPI_Pack/MPI_Unpack to the non-contiguous data layouts. Accepted values: datatype, pack
  • –param=layout:<derived_datatype> - derived datatype to be used for communication.
  • layout-specific parameters
    • –param=layout:tiled –params=A:<nelements> –params=B:<nelements>
    • –param=layout:bucket –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements>
    • –param=layout:block –params=A:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:alternating –params=A1:<nelements> –params=A2:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:basetype
    • –param=layout:tiled_heterogeneous –params=A:<nelements> –params=B:<nelements> –params=c:<nbasetypes> –params=blist:<list of “/”-separated basetypes>
    • –param=layout:tiled_struct –params=A:<nelements> –params=B:<nelements> –params=S1:<nblocks> –params=S2:<nblocks>
    • –param=layout:tiled_vector –params=A:<nelements> –params=B:<nelements>
    • –param=layout:vector_tiled –params=A:<nelements> –params=B:<nelements> –params=S:<nblocks>
    • –param=layout:tiled_struct_indexed_all –params=A:<nelements> –params=B:<nelements>
    • –param=layout:tiled_struct_indexed_Sblocks –params=A:<nelements> –params=B:<nelements> –params=S:<nblocks>
    • –param=layout:blocks –params=A:<nelements> –params=B:<nelements> –params=l:<nblocks>
    • –param=layout:block_indexed –params=A:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:alternating_repeated –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements>
    • –param=layout:alternating_struct –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements>
    • –param=layout:alternating_indexed –params=A1:<nelements> –params=A2:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:alternating_indexed_fixed –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements> –params=S:<nblocks>
    • –param=layout:contig_alternating_indexed_fixed –params=A1:<nelements> –params=A2:<nelements> –params=B:<nelements> –params=S:<nblocks>
    • –param=layout:alternating_aligned –params=A1:<nelements> –params=A2:<nelements> –params=B1:<nelements> –params=B2:<nelements>
    • –param=layout:rowcol_full_indexed –params=A:<nelements>
    • –param=layout:rowcol_contiguous_and_indexed –params=A:<nelements>
    • –param=layout:rowcol_struct –params=A:<nelements>
    • –param=layout:contig_type –param=subtype:<basic_datatype> <basic_datatype_parameters>
      • the subtype has to be one of the four basic datatypes tiled, block, bucket, or alternating
      • the <basic_datatype_parameters> are specific to each layout as shown above, e.g., for the tiled subtype:
        • –param=layout:contig_type –param=subtype:tiled –params=A:<nelements> –params=B:<nelements>

Run-time Measurement Parameters

  • –nrep=<nrep> set number of repetitions for each measurement
  • –summary=<args> list of comma-separated data summarizing methods (mean, median, min, max), e.g., --summary=mean,max. Instead of printing the run-time measured for each repetition, the benchmark will only output one summarized value when this argument is used
  • -v print the individual run-times measured for each process
  • additional parameters that depend on the ReproMPI configuration
    • parameters Related to the Window-based Synchronization
      • –window-size=<win> window size in microseconds for window-based synchronization
      • –fitpoints=<nfit> number of fitpoints (default: 20) - used by the HCA or JK synchronization methods
      • –exchanges=<nexc> number of exchanges (default: 10) - used by the HCA or JK synchronization methods

For more details about the benchmarking parameters, please check the ReproMPI README file (

Benchmark Configuration

The build script relies on several parameters to further customize the benchmark configuration:

  • –git GIT - URL or local path to git repository (a path to the ReproMPI code directory on the local machine can also be provided instead of the path to a repository)
  • –sha1 SHA1 - commit SHA1 to use (not needed if a local path is specified)
  • –synctype {mpi_barrier,dissemination_barrier,hca,jk,skampi} - select process synchronization method in ReproMPI [default: MPI_Barrier]
  • –compilertype {cray,bgq,intel,default} - select compiler [default: mpicc needs to be available in the path]
  • –rdtscp - enable RDTSCP-based time measurement in ReproMPI
  • –cpufreq CPUFREQ - set maximum CPU frequency in MHz (always needed when RDTSCP-based timing is enabled) [default: 2300 MHz]

MPI libraries and compilers

MPI-Datatybe and ReproMPI provide a set of configuration files for commonly-used machines. To use a different compiler, run the build script with the configure option, then manually modify the CMakeLists.txt files in both benchmarks to match the new requirements, and re-run cmake.

For more details about the compiler and MPI library configuration, please check the ReproMPI README file (

The compile option can then be used to compile both codes.


MPI Datatype Benchmark





No releases published


No packages published
You can’t perform that action at this time.