A language detection library for PHP. Detects the language from a given text string.
Latest commit 8424d70 Feb 20, 2017 @patrickschur committed on GitHub Fixed wrong formatted README.md



Build Status Code Coverage Version Total Downloads Maintenance Minimum PHP Version License
Build Status codecov Version Total Downloads Maintenance Minimum PHP Version License

This library can detect the language of a given text string. It can parse given training text in many different idioms into a sequence of N-grams and builds a database file in JSON format to be used in the detection phase. Then it can take a given text and detect its language using the database previously generated in the training phase. The library comes with text samples used for training and detecting text in 106 languages.

Table of Contents

Installation with Composer

Note: This library requires the Multibyte String extension in order to work.

$ composer require patrickschur/language-detection

Basic Usage

To detect the language correctly, the length of the input text should be at least some sentences.

use LanguageDetection\Language;

$ld = new Language;

$ld->detect('Mag het een onsje meer zijn?')->close();


    "nl" => 0.66193548387097,
    "af" => 0.51338709677419,
    "br" => 0.49634408602151,
    "nb" => 0.48849462365591,
    "nn" => 0.48741935483871,
    "fy" => 0.47822580645161,
    "dk" => 0.47172043010753,
    "sv" => 0.46408602150538,
    "bi" => 0.46021505376344,
    "de" => 0.45903225806452,


__construct(array $result = [])

You can pass an array of languages to the constructor. To compare the desired sentence only with the given languages. This can dramatically increase the performance.

$ld = new Language(['de', 'en', 'nl']);

// Compares the sentence only with "de", "en" and "nl" language models.
$ld->detect('Das ist ein Test');

whitelist(string ...$whitelist)

Provide a whitelist. Returns a list of languages, which are required.

$ld->detect('Mag het een onsje meer zijn?')->whitelist('de', 'nn', 'nl', 'af')->close();


    "nl" => 0.66193548387097,
    "af" => 0.51338709677419,
    "nn" => 0.48741935483871,
    "de" => 0.45903225806452

blacklist(string ...$blacklist)

Provide a blacklist. Removes the given languages from the result.

$ld->detect('Mag het een onsje meer zijn?')->blacklist('dk', 'nb', 'de')->close();


    "nl" => 0.66193548387097,
    "af" => 0.51338709677419,
    "br" => 0.49634408602151,
    "nn" => 0.48741935483871,
    "fy" => 0.47822580645161,
    "sv" => 0.46408602150538,
    "bi" => 0.46021505376344,


Returns the best results.

$ld->detect('Mag het een onsje meer zijn?')->bestResults()->close();


    "nl" => 0.66193548387097

limit(int $offset, int $length = null)

You can specify the number of records to return. For example the following code will return the top three entries.

$ld->detect('Mag het een onsje meer zijn?')->limit(0, 3)->close();


    "nl" => 0.66193548387097,
    "af" => 0.51338709677419,
    "br" => 0.49634408602151


Returns the result as an array.

$ld->detect('This is an example!')->close();


    "en" => 0.5889400921659,
    "gd" => 0.55691244239631,
    "ga" => 0.55376344086022,
    "et" => 0.48294930875576,
    "af" => 0.48218125960061,

setTokenizer(TokenizerInterface $tokenizer)

The script use a tokenizer for getting all words in a sentence. You can define your own tokenizer to deal with numbers for example.

$ld->setTokenizer(new class implements TokenizerInterface
    public function tokenize(string $str): array 
        return preg_split('/[^a-z0-9]/u', $str, -1, PREG_SPLIT_NO_EMPTY);

This will return only characters from the alphabet in lowercase and numbers between 0 and 9.


Returns the top entrie of the result. Note the echo at the beginning.

echo $ld->detect('Das ist ein Test.');




Serialized the data to JSON.

$object = $ld->detect('Tere tulemast tagasi! Nägemist!');

json_encode($object, JSON_PRETTY_PRINT);


    "et": 0.5224748810153358,
    "ch": 0.45817028027498674,
    "bi": 0.4452670544685352,
    "fi": 0.440983606557377,
    "lt": 0.4382866208355367,

Method chaining

You can also combine methods with each other. The following example will remove all entries specified in the blacklist and returns only the top four entries.

$ld->detect('Mag het een onsje meer zijn?')->blacklist('af', 'dk', 'sv')->limit(0, 4)->close();


    "nl" => 0.66193548387097
    "br" => 0.49634408602151
    "nb" => 0.48849462365591
    "nn" => 0.48741935483871


You can also access the object directly as an array.

$object = $ld->detect(Das ist ein Test');

echo $object['de'];
echo $object['en'];
echo $object['xy']; // does not exists



Supported languages

The library currently supports 106 languages.

Language Language Code Language Language Code
Abkhaz ab Italian it
Afrikaans af Inuktitut iu
Amharic am Japanese ja
Arabic ar Javanese jv
Aymara ay Georgian ka
Azerbaijani, North (Cyrillic) az-Cyrl Khmer km
Azerbaijani, North (Latin) az-Latn Korean ko
Belarusan be Kanuri kr
Bulgarian bg Kurdish ku
Bislama bi Latin la
Bengali bn Ganda lg
Tibetan bo Lao lo
Breton br Lithuanian lt
Bosnian (Cyrillic) bs-Cyrl Latvian lv
Bosnian (Latin) bs-Latn Marshallese mh
Catalan ca Mongolian, Halh (Cyrillic) mn-Cyrl
Chamorro ch Malay (Arabic) ms-Arab
Corsican co Malay (Latin) ms-Latn
Cree cr Maltese mt
Czech cs Norwegian, Bokmål nb
Welsh cy Ndonga ng
German de Dutch nl
Danish dk Norwegian, Nynorsk nn
Dzongkha dz Navajo nv
Greek (monotonic) el-monoton Polish pl
Greek (polytonic) el-polyton Portuguese (Brazil) pt-BR
English en Portuguese (Portugal) pt-PT
Esperanto eo Romanian ro
Spanish es Russian ru
Estonian et Slovak sk
Basque eu Slovene sl
Persian fa Somali so
Finnish fi Albanian sq
Fijian fj Swati ss
Faroese fo Swedish sv
French fr Tamil ta
Frisian fy Thai th
Gaelic, Irish ga Tagalog tl
Gaelic, Scottish gd Turkish tr
Galician gl Tatar tt
Guarani gn Tahitian ty
Gujarati gu Uyghur (Arabic) ug-Arab
Hausa ha Uyghur (Latin) ug-Latn
Hebrew he Ukrainian uk
Hindi hi Uzbek uz
Croatian hr Venda ve
Hungarian hu Vietnamese vi
Armenian hy Walloon wa
Interlingua ia Wolof wo
Indonesian id Xhosa xh
Igbo ig Yoruba yo
Ido io Chinese, Mandarin (Simplified) zh-Hans
Icelandic is Chinese, Mandarin (Traditional) zh-Hant

Other languages

The library is trainable which means you can change, remove and add your own language files to it. If your language not supported, feel free to add your own language files. To do that, create a new directory in resources and add your training text to it.

Note: The training text should be a .txt file.


|- resources
    |- ham
        |- ham.txt
    |- spam
        |- spam.txt

As you can see, we can also used it to detect spam or ham. If you have added your own files, you must first generate a language profile for it. This may take a few seconds.

use LanguageDetection\Trainer;

$t = new Trainer();


Remove these few lines after execution and now we can classify texts by their language with our own training text.


How can I improve the detection phase?

To improve the detection phase you have to use more n-grams. But be careful this will slow down the script. I figured out that the detection phase is much better when you are using around 9.000 n-grams (default is 310). To do that look at the code right below:

$t = new Trainer();



First you have to train it. Now you can classify texts like before but you must specify how many n-grams you want to use.

$ld = new Language();


// "grille pain" is french and means "toaster" in english
var_dump($ld->detect('grille pain')->bestResults());


class LanguageDetection\LanguageResult#5 (1) {
  private $result =>
  array(2) {
    'fr' =>
    'en' =>

Is the detection process slower if language files are very big?

No it is not. The trainer class will only use the best 310 n-grams of the language. If you don't change this number or add more language files it will not affect the performance. Only creating the N-grams is slower. However, the creation of N-grams must be done only once. The detection phase is only affected when you are trying to detect big chunks of texts.

Summary: The training phase will be slower but the detection phase remains the same.


Feel free to contribute. Any help is welcome.


This projects is licensed under the terms of the MIT license.