Skip to content
Deep Drug Coder: A TensorFlow2.0 heteroencoder for molecular encoding and de novo generation
Python Jupyter Notebook
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
datasets
ddc_pub
env
figures
models
.gitattributes
.gitignore
LICENSE
README.md
demo_cRNN.ipynb
demo_heteroencoder.ipynb
setup.py

README.md

DeepDrugCoder (DDC): Heteroencoder for molecular encoding and de novo generation

Maintenance License: GPL v3 Python 3.6 Open Source Love svg1 Code style: black

[UPDATE] 30-10-2019: The code now only supports tensorflow-gpu >= 2.0.


Code for the purposes of Direct Steering of de novo Molecular Generation using Descriptor Conditional Recurrent Neural Networks (cRNNs).

Cheers if you were brought here by this blog post. If not, give it a read :)


Deep learning has acquired considerable momentum over the past couple of years in the domain of de-novo drug design. Particularly, transfer and reinforcement learning have demonstrated the capability of steering the generative process towards chemical regions of interest. In this work, we propose a simple approach to the focused generative task by constructing a conditional recurrent neural network (cRNN). For this purpose, we aggregate selected molecular descriptors along with a QSAR-based bioactivity label and transform them into initial LSTM states before starting the generation of SMILES strings that are focused towards the aspired properties. We thus tackle the inverse QSAR problem directly by training on molecular descriptors, instead of iteratively optimizing around a set of candidate molecules. The trained cRNNs are able to generate molecules near multiple specified conditions, while maintaining an output that is more focused than traditional RNNs yet less focused than autoencoders. The method shows promise for applications in both scaffold hoping and ligand series generation, depending on whether the cRNN is trained on calculated scalar molecular properties or structural fingerprints. This also demonstrates that fingerprint-to-molecule decoding is feasible, leading to molecules that are similar – if not identical – to the ones the fingerprints originated from. Additionally, the cRNN is able to generate a larger fraction of predicted active compounds against the DRD2 receptor when compared to an RNN trained with the transfer learning model.

Currently only GPU version of the model is supported. You need access to a GPU to use it.

More detailed instructions are to be pushed soon. Please refer to the demo notebooks for usage details.

Figure from manuscript


Custom Dependencies

Installation

  • Clone the repo and navigate to it.
  • Create a predefined Python3.6 conda environment by conda env create -f env/ddc_env.yml. This ensures that you have the correct version of rdKit and cudatoolkit.
  • Run python setup.py install to install remaining dependencies and add the package to the Python path.
  • Add the environment in the drop-down list of jupyter by python -m ipykernel install --user --name ddc_env --display-name "ddc_env (python_3.6.7)".

Usage

conda activate ddc_env
from ddc_pub import ddc_v3 as ddc

API

  • fit(): Fit a DDC model to the dataset.
  • vectorize(): Convert a binary RDKit molecule to its One-Hot-Encoded representation.
  • transform(): Encode a vectorized molecule to its latent representation.
  • predict(): Decode a latent representation into a SMILES string and return its Negative Log Likelihood (NLL).
  • predict_batch(): Decode a list of latent representations into SMILES strings and return their NLLs.
  • get_smiles_nll(): Back-calculate the NLL of a known SMILES string, if it was to be sampled by the biased decoder.
  • get_smiles_nll_batch(): Back-calculate the NLLs of a batch of known SMILES strings, if they were to be sampled by the biased decoder.
  • summary(): Display essential architectural parameters.
  • get_graphs(): Export model graphs to .png files using pydot and graphviz (might fail).
  • save(): Save the model in a .zip directory.

Issues

Please report all installation / usage issues by opening an issue at this repo.

  • Currently, we have noticed erroneous behavior of some functions with numpy.__version__==1.17.2, please stick to 1.16.5 for now.
You can’t perform that action at this time.