Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PS-7794: Rework Debian packages for zenfs (#4393) #5

Conversation

Sudokamikaze
Copy link

No description provided.

Copy link
Owner

@percona-ysorokin percona-ysorokin left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@percona-ysorokin percona-ysorokin merged commit aa3e8e5 into percona-ysorokin:dev/PS-7757-8.0-zenfs Jul 13, 2021
percona-ysorokin pushed a commit that referenced this pull request May 18, 2022
*Problem:*

ASAN complains about stack-buffer-overflow on function `mysql_heartbeat`:

```
==90890==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fe746d06d14 at pc 0x7fe760f5b017 bp 0x7fe746d06cd0 sp 0x7fe746d06478
WRITE of size 24 at 0x7fe746d06d14 thread T16777215

Address 0x7fe746d06d14 is located in stack of thread T26 at offset 340 in frame
    #0 0x7fe746d0a55c in mysql_heartbeat(void*) /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:62

  This frame has 4 object(s):
    [48, 56) 'result' (line 66)
    [80, 112) '_db_stack_frame_' (line 63)
    [144, 200) 'tm_tmp' (line 67)
    [240, 340) 'buffer' (line 65) <== Memory access at offset 340 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork
      (longjmp and C++ exceptions *are* supported)
Thread T26 created by T25 here:
    #0 0x7fe760f5f6d5 in __interceptor_pthread_create ../../../../src/libsanitizer/asan/asan_interceptors.cpp:216
    #1 0x557ccbbcb857 in my_thread_create /home/yura/ws/percona-server/mysys/my_thread.c:104
    #2 0x7fe746d0b21a in daemon_example_plugin_init /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:148
    #3 0x557ccb4c69c7 in plugin_initialize /home/yura/ws/percona-server/sql/sql_plugin.cc:1279
    #4 0x557ccb4d19cd in mysql_install_plugin /home/yura/ws/percona-server/sql/sql_plugin.cc:2279
    #5 0x557ccb4d218f in Sql_cmd_install_plugin::execute(THD*) /home/yura/ws/percona-server/sql/sql_plugin.cc:4664
    #6 0x557ccb47695e in mysql_execute_command(THD*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5160
    #7 0x557ccb47977c in mysql_parse(THD*, Parser_state*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5952
    percona#8 0x557ccb47b6c2 in dispatch_command(THD*, COM_DATA const*, enum_server_command) /home/yura/ws/percona-server/sql/sql_parse.cc:1544
    percona#9 0x557ccb47de1d in do_command(THD*) /home/yura/ws/percona-server/sql/sql_parse.cc:1065
    percona#10 0x557ccb6ac294 in handle_connection /home/yura/ws/percona-server/sql/conn_handler/connection_handler_per_thread.cc:325
    percona#11 0x557ccbbfabb0 in pfs_spawn_thread /home/yura/ws/percona-server/storage/perfschema/pfs.cc:2198
    percona#12 0x7fe760ab544f in start_thread nptl/pthread_create.c:473
```

The reason is that `my_thread_cancel` is used to finish the daemon thread. This is not and orderly way of finishing the thread. ASAN does not register the stack variables are not used anymore which generates the error above.

This is a benign error as all the variables are on the stack.

*Solution*:

Finish the thread in orderly way by using a signalling variable.
percona-ysorokin pushed a commit that referenced this pull request Aug 2, 2022
**Problem:**

The tests fail under ASAN:

```
==470513==ERROR: AddressSanitizer: heap-use-after-free on address 0x632000054e20 at pc 0x556599b68016 bp 0x7ffc630afb30 sp 0x7ffc630afb20
READ of size 8 at 0x632000054e20 thread T0
    #0 0x556599b68015 in destroy_rwlock(PFS_rwlock*) /tmp/ps/storage/perfschema/pfs_instr.cc:430
    #1 0x556599b30b82 in pfs_destroy_rwlock_v2(PSI_rwlock*) /tmp/ps/storage/perfschema/pfs.cc:2596
    #2 0x7fa44336d62e in inline_mysql_rwlock_destroy /tmp/ps/include/mysql/psi/mysql_rwlock.h:289
    #3 0x7fa44336da39 in vtoken_lock_cleanup::~vtoken_lock_cleanup() /tmp/ps/plugin/version_token/version_token.cc:517
    #4 0x7fa46a7188a6 in __run_exit_handlers /build/glibc-SzIz7B/glibc-2.31/stdlib/exit.c:108
    #5 0x7fa46a718a5f in __GI_exit /build/glibc-SzIz7B/glibc-2.31/stdlib/exit.c:139
    #6 0x556596531da2 in mysqld_exit /tmp/ps/sql/mysqld.cc:2512
    #7 0x55659655d579 in mysqld_main(int, char**) /tmp/ps/sql/mysqld.cc:8505
    percona#8 0x55659609c5b5 in main /tmp/ps/sql/main.cc:25
    percona#9 0x7fa46a6f6082 in __libc_start_main ../csu/libc-start.c:308
    percona#10 0x55659609c4ed in _start (/tmp/results/PS/runtime_output_directory/mysqld+0x3c1b4ed)

0x632000054e20 is located 50720 bytes inside of 90112-byte region [0x632000048800,0x63200005e800)
freed by thread T0 here:
    #0 0x7fa46b5f940f in __interceptor_free ../../../../src/libsanitizer/asan/asan_malloc_linux.cc:122
    #1 0x556599b617eb in pfs_free(PFS_builtin_memory_class*, unsigned long, void*) /tmp/ps/storage/perfschema/pfs_global.cc:113
    #2 0x556599b61a15 in pfs_free_array(PFS_builtin_memory_class*, unsigned long, unsigned long, void*) /tmp/ps/storage/perfschema/pfs_global.cc:177
    #3 0x556599b6f28b in PFS_buffer_default_allocator<PFS_rwlock>::free_array(PFS_buffer_default_array<PFS_rwlock>*) /tmp/ps/storage/perfschema/pfs_buffer_container.h:172
    #4 0x556599b75628 in PFS_buffer_scalable_container<PFS_rwlock, 1024, 1024, PFS_buffer_default_array<PFS_rwlock>, PFS_buffer_default_allocator<PFS_rwlock> >::cleanup() /tmp/ps/storage/perfschema/pfs_buffer_container.h:452
    #5 0x556599b6d591 in cleanup_instruments() /tmp/ps/storage/perfschema/pfs_instr.cc:231
    #6 0x556599b8c3f1 in cleanup_performance_schema /tmp/ps/storage/perfschema/pfs_server.cc:343
    #7 0x556599b8dcfc in shutdown_performance_schema() /tmp/ps/storage/perfschema/pfs_server.cc:374
    percona#8 0x556596531d96 in mysqld_exit /tmp/ps/sql/mysqld.cc:2500
    percona#9 0x55659655d579 in mysqld_main(int, char**) /tmp/ps/sql/mysqld.cc:8505
    percona#10 0x55659609c5b5 in main /tmp/ps/sql/main.cc:25
    percona#11 0x7fa46a6f6082 in __libc_start_main ../csu/libc-start.c:308

previously allocated by thread T0 here:
    #0 0x7fa46b5fa6e5 in __interceptor_posix_memalign ../../../../src/libsanitizer/asan/asan_malloc_linux.cc:217
    #1 0x556599b6167e in pfs_malloc(PFS_builtin_memory_class*, unsigned long, int) /tmp/ps/storage/perfschema/pfs_global.cc:68
    #2 0x556599b6187a in pfs_malloc_array(PFS_builtin_memory_class*, unsigned long, unsigned long, int) /tmp/ps/storage/perfschema/pfs_global.cc:155
    #3 0x556599b6fa9e in PFS_buffer_default_allocator<PFS_rwlock>::alloc_array(PFS_buffer_default_array<PFS_rwlock>*) /tmp/ps/storage/perfschema/pfs_buffer_container.h:159
    #4 0x556599b6ff12 in PFS_buffer_scalable_container<PFS_rwlock, 1024, 1024, PFS_buffer_default_array<PFS_rwlock>, PFS_buffer_default_allocator<PFS_rwlock> >::allocate(pfs_dirty_state*) /tmp/ps/storage/perfschema/pfs_buffer_container.h:602
    #5 0x556599b69abc in create_rwlock(PFS_rwlock_class*, void const*) /tmp/ps/storage/perfschema/pfs_instr.cc:402
    #6 0x556599b341f5 in pfs_init_rwlock_v2(unsigned int, void const*) /tmp/ps/storage/perfschema/pfs.cc:2578
    #7 0x556599b9487b in inline_mysql_rwlock_init /tmp/ps/include/mysql/psi/mysql_rwlock.h:261
    percona#8 0x556599b94ba7 in init_pfs_tls_channels_instrumentation() /tmp/ps/storage/perfschema/pfs_tls_channel.cc:209
    percona#9 0x556599b8ca44 in initialize_performance_schema(PFS_global_param*, PSI_thread_bootstrap**, PSI_mutex_bootstrap**, PSI_rwlock_bootstrap**, PSI_cond_bootstrap**, PSI_file_bootstrap**, PSI_socket_bootstrap**, PSI_table_bootstrap**, PSI_mdl_bootstrap**, PSI_idle_bootstrap**, PSI_stage_bootstrap**, PSI_statement_bootstrap**, PSI_transaction_bootstrap**, PSI_memory_bootstrap**, PSI_error_bootstrap**, PSI_data_lock_bootstrap**, PSI_system_bootstrap**, PSI_tls_channel_bootstrap**) /tmp/ps/storage/perfschema/pfs_server.cc:266
    percona#10 0x55659655a585 in mysqld_main(int, char**) /tmp/ps/sql/mysqld.cc:7497
    percona#11 0x55659609c5b5 in main /tmp/ps/sql/main.cc:25
    percona#12 0x7fa46a6f6082 in __libc_start_main ../csu/libc-start.c:308

SUMMARY: AddressSanitizer: heap-use-after-free /tmp/ps/storage/perfschema/pfs_instr.cc:430 in destroy_rwlock(PFS_rwlock*)
Shadow bytes around the buggy address:
  0x0c6480002970: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  0x0c6480002980: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  0x0c6480002990: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  0x0c64800029a0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  0x0c64800029b0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
=>0x0c64800029c0: fd fd fd fd[fd]fd fd fd fd fd fd fd fd fd fd fd
  0x0c64800029d0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  0x0c64800029e0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  0x0c64800029f0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  0x0c6480002a00: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  0x0c6480002a10: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
Shadow byte legend (one shadow byte represents 8 application bytes):
  Addressable:           00
  Partially addressable: 01 02 03 04 05 06 07
  Heap left redzone:       fa
  Freed heap region:       fd
  Stack left redzone:      f1
  Stack mid redzone:       f2
  Stack right redzone:     f3
  Stack after return:      f5
  Stack use after scope:   f8
  Global redzone:          f9
  Global init order:       f6
  Poisoned by user:        f7
  Container overflow:      fc
  Array cookie:            ac
  Intra object redzone:    bb
  ASan internal:           fe
  Left alloca redzone:     ca
  Right alloca redzone:    cb
  Shadow gap:              cc
==470513==ABORTING
```

The reason of the error is Percona's change on
5ae4d27 which causes the static
variables of the plugin not to be deallocated.

This causes `void cleanup_instruments()` to be called before
`vtoken_lock_cleanup::~vtoken_lock_cleanup()`, which finds
the memory of the object to have been deallocated.

**Solution:**

Do not run the tests under ASAN or Valgrind.
percona-ysorokin pushed a commit that referenced this pull request Aug 2, 2022
**Problem:**

The following leak is detected when running the test
`encryption.upgrade_crypt_data_57_v1`:

```
==388399==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 70 byte(s) in 1 object(s) allocated from:
    #0 0x7f5f87812808 in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cc:144
    #1 0x55f098875d2c in ut::detail::malloc(unsigned long) /home/ldonoso/src/release-8.0.29-20/storage/innobase/include/detail/ut/allocator_traits.h:71
    #2 0x55f098875db5 in ut::detail::Alloc_fn::malloc(unsigned long) /home/ldonoso/src/release-8.0.29-20/storage/innobase/include/detail/ut/allocator_traits.h:88
    #3 0x55f0988aa4b9 in void* ut::detail::Alloc_fn::alloc<false>(unsigned long) /home/ldonoso/src/release-8.0.29-20/storage/innobase/include/detail/ut/allocator_traits.h:97
    #4 0x55f09889b7a3 in void* ut::detail::Alloc_pfs::alloc<false>(unsigned long, unsigned int) /home/ldonoso/src/release-8.0.29-20/storage/innobase/include/detail/ut/alloc.h:275
    #5 0x55f09889bb9a in std::enable_if<ut::detail::Alloc_pfs::is_pfs_instrumented_v, void*>::type ut::detail::Alloc_<ut::detail::Alloc_pfs>::alloc<false, ut::detail::Alloc_pfs>(unsigned long, unsigned int) /home/ldonoso/src/release-8.0.29-20/storage/innobase/include/detail/ut/alloc.h:438
    #6 0x55f0988767dd in ut::malloc_withkey(ut::PSI_memory_key_t, unsigned long) /home/ldonoso/src/release-8.0.29-20/storage/innobase/include/ut0new.h:604
    #7 0x55f09937dd3c in rec_copy_prefix_to_buf_old /home/ldonoso/src/release-8.0.29-20/storage/innobase/rem/rem0rec.cc:1206
    percona#8 0x55f09937dfd3 in rec_copy_prefix_to_buf(unsigned char const*, dict_index_t const*, unsigned long, unsigned char**, unsigned long*) /home/ldonoso/src/release-8.0.29-20/storage/innobase/rem/rem0rec.cc:1233
    percona#9 0x55f098ae0ae3 in dict_index_copy_rec_order_prefix(dict_index_t const*, unsigned char const*, unsigned long*, unsigned char**, unsigned long*) /home/ldonoso/src/release-8.0.29-20/storage/innobase/dict/dict0dict.cc:3764
    percona#10 0x55f098c3d0ba in btr_pcur_t::store_position(mtr_t*) /home/ldonoso/src/release-8.0.29-20/storage/innobase/btr/btr0pcur.cc:141
    percona#11 0x55f098c027b6 in dict_getnext_system_low /home/ldonoso/src/release-8.0.29-20/storage/innobase/dict/dict0load.cc:256
    percona#12 0x55f098c02933 in dict_getnext_system(btr_pcur_t*, mtr_t*) /home/ldonoso/src/release-8.0.29-20/storage/innobase/dict/dict0load.cc:298
    percona#13 0x55f098c0c05b in dict_check_sys_tables /home/ldonoso/src/release-8.0.29-20/storage/innobase/dict/dict0load.cc:1573
    percona#14 0x55f098c1770d in dict_load_tablespaces_for_upgrade() /home/ldonoso/src/release-8.0.29-20/storage/innobase/dict/dict0load.cc:3233
    percona#15 0x55f0987e9ed1 in innobase_init_files /home/ldonoso/src/release-8.0.29-20/storage/innobase/handler/ha_innodb.cc:6072
    percona#16 0x55f098819ed3 in innobase_ddse_dict_init /home/ldonoso/src/release-8.0.29-20/storage/innobase/handler/ha_innodb.cc:13985
    percona#17 0x55f097fa5c10 in dd::bootstrap::DDSE_dict_init(THD*, dict_init_mode_t, unsigned int) /home/ldonoso/src/release-8.0.29-20/sql/dd/impl/bootstrap/bootstrapper.cc:742
    percona#18 0x55f0986696a6 in dd::upgrade_57::do_pre_checks_and_initialize_dd(THD*) /home/ldonoso/src/release-8.0.29-20/sql/dd/upgrade_57/upgrade.cc:922
    percona#19 0x55f09550e082 in handle_bootstrap /home/ldonoso/src/release-8.0.29-20/sql/bootstrap.cc:327
    percona#20 0x55f0997416e7 in pfs_spawn_thread /home/ldonoso/src/release-8.0.29-20/storage/perfschema/pfs.cc:2943
    percona#21 0x7f5f876a1608 in start_thread /build/glibc-SzIz7B/glibc-2.31/nptl/pthread_create.c:477

SUMMARY: AddressSanitizer: 70 byte(s) leaked in 1 allocation(s).
```

**Solution:**

The cause of the leak raises from the traversing of `pcur`. When
traversing is exhausted `pcur.close()` is automatically called and all
`pcur` resources are deallocated.

Percona adds some early returns to the traverse, hence sometimes the
traversing is not exhausted and `pcur.close()` is not called.

The solution is calling `pcur.close()` explicitly. `close()` is an
idempotent function so it is not a bug if it is called several times as
a result of this change.
percona-ysorokin pushed a commit that referenced this pull request Sep 5, 2022
Use DBUG_TRACE in changed functions

Change-Id: Idfd60e26dc6ec45f61cb43fea6dfe0ec21c615e1
percona-ysorokin pushed a commit that referenced this pull request Sep 5, 2022
-- Patch #1: Persist secondary load information --

Problem:
We need a way of knowing which tables were loaded to HeatWave after
MySQL restarts due to a crash or a planned shutdown.

Solution:
Add a new "secondary_load" flag to the `options` column of mysql.tables.
This flag is toggled after a successful secondary load or unload. The
information about this flag is also reflected in
INFORMATION_SCHEMA.TABLES.CREATE_OPTIONS.

-- Patch #2 --

The second patch in this worklog triggers the table reload from InnoDB
after MySQL restart.

The recovery framework recognizes that the system restarted by checking
whether tables are present in the Global State. If there are no tables
present, the framework will access the Data Dictionary and find which
tables were loaded before the restart.

This patch introduces the "Data Dictionary Worker" - a MySQL service
recovery worker whose task is to query the INFORMATION_SCHEMA.TABLES
table from a separate thread and find all tables whose secondary_load
flag is set to 1.

All tables that were found in the Data Dictionary will be appended to
the list of tables that have to be reloaded by the framework from
InnoDB.

If an error occurs during restart recovery we will not mark the recovery
as failed. This is done because the types of failures that can occur
when the tables are reloaded after a restart are less critical compared
to previously existing recovery situations. Additionally, this code will
soon have to be adapted for the next worklog in this area so we are
proceeding with the simplest solution that makes sense.

A Global Context variable m_globalStateEmpty is added which indicates
whether the Global State should be recovered from an external source.

-- Patch #3 --

This patch adds the "rapid_reload_on_restart" system variable. This
variable is used to control whether tables should be reloaded after a
restart of mysqld or the HeatWave plugin. This variable is persistable
(i.e., SET PERSIST RAPID_RELOAD_ON_RESTART = TRUE/FALSE).

The default value of this variable is set to false.

The variable can be modified in OFF, IDLE, and SUSPENDED states.

-- Patch #4 --

This patch refactors the recovery code by removing all recovery-related
code from ha_rpd.cc and moving it to separate files:

  - ha_rpd_session_factory.h/cc:
  These files contain the MySQLAdminSessionFactory class, which is used
to create admin sessions in separate threads that can be used to issue
SQL queries.

  - ha_rpd_recovery.h/cc:
  These files contain the MySQLServiceRecoveryWorker,
MySQLServiceRecoveryJob and ObjectStoreRecoveryJob classes which were
previously defined in ha_rpd.cc. This file also contains a function that
creates the RecoveryWorkerFactory object. This object is passed to the
constructor of the Recovery Framework and is used to communicate with
the other section of the code located in rpdrecoveryfwk.h/cc.

This patch also renames rpdrecvryfwk to rpdrecoveryfwk for better
readability.

The include relationship between the files is shown on the following
diagram:

        rpdrecoveryfwk.h◄──────────────rpdrecoveryfwk.cc
            ▲    ▲
            │    │
            │    │
            │    └──────────────────────────┐
            │                               │
        ha_rpd_recovery.h◄─────────────ha_rpd_recovery.cc──┐
            ▲                               │           │
            │                               │           │
            │                               │           │
            │                               ▼           │
        ha_rpd.cc───────────────────────►ha_rpd.h       │
                                            ▲           │
                                            │           │
            ┌───────────────────────────────┘           │
            │                                           ▼
    ha_rpd_session_factory.cc──────►ha_rpd_session_factory.h

Other changes:
  - In agreement with Control Plane, the external Global State is now
  invalidated during recovery framework startup if:
    1) Recovery framework recognizes that it should load the Global
    State from an external source AND,
    2) rapid_reload_on_restart is set to OFF.

  - Addressed review comments for Patch #3, rapid_reload_on_restart is
  now also settable while plugin is ON.

  - Provide a single entry point for processing external Global State
  before starting the recovery framework loop.

  - Change when the Data Dictionary is read. Now we will no longer wait
  for the HeatWave nodes to connect before querying the Data Dictionary.
  We will query it when the recovery framework starts, before accepting
  any actions in the recovery loop.

  - Change the reload flow by inserting fake global state entries for
  tables that need to be reloaded instead of manually adding them to a
  list of tables scheduled for reload. This method will be used for the
  next phase where we will recover from Object Storage so both recovery
  methods will now follow the same flow.

  - Update secondary_load_dd_flag added in Patch #1.

  - Increase timeout in wait_for_server_bootup to 300s to account for
  long MySQL version upgrades.

  - Add reload_on_restart and reload_on_restart_dbg tests to the rapid
  suite.

  - Add PLUGIN_VAR_PERSIST_AS_READ_ONLY flag to "rapid_net_orma_port"
  and "rapid_reload_on_restart" definitions, enabling their
  initialization from persisted values along with "rapid_bootstrap" when
  it is persisted as ON.

  - Fix numerous clang-tidy warnings in recovery code.

  - Prevent suspended_basic and secondary_load_dd_flag tests to run on
  ASAN builds due to an existing issue when reinstalling the RAPID
  plugin.

-- Bug#33752387 --

Problem:
A shutdown of MySQL causes a crash in queries fired by DD worker.

Solution:
Prevent MySQL from killing DD worker's queries by instantiating a
DD_kill_immunizer before the queries are fired.

-- Patch #5 --

Problem:
A table can be loaded before the DD Worker queries the Data Dictionary.
This means that table will be wrongly processed as part of the external
global state.

Solution:
If the table is present in the current in-memory global state we will
not consider it as part of the external global state and we will not
process it by the recovery framework.

-- Bug#34197659 --

Problem:
If a table reload after restart causes OOM the cluster will go into
RECOVERYFAILED state.

Solution:
Recognize when the tables are being reloaded after restart and do not
move the cluster into RECOVERYFAILED. In that case only the current
reload will fail and the reload for other tables will be attempted.

Change-Id: Ic0c2a763bc338ea1ae6a7121ff3d55b456271bf0
percona-ysorokin pushed a commit that referenced this pull request Oct 26, 2023
https://jira.percona.com/browse/PS-8592

Description
-----------
GR suffered from problems caused by the security probes and network scanner
processes connecting to the group replication communication port. This usually
is not a problem, but poses a serious threat when another member tries to join
the cluster by initialting a connection to the member which is affected by
external processes using the port dedicated for group communication for longer
durations.

On such activites by external processes, the SSL enabled server stalled forever
on the SSL_accept() call waiting for handshake data. Below is the stacktrace:

    Thread 55 (Thread 0x7f7bb77ff700 (LWP 2198598)):
    #0 in read ()
    #1 in sock_read ()
    #2 in BIO_read ()
    #3 in ssl23_read_bytes ()
    #4 in ssl23_get_client_hello ()
    #5 in ssl23_accept ()
    #6 in xcom_tcp_server_startup(Xcom_network_provider*) ()

When the server stalled in the above path forever, it prohibited other members
to join the cluster resulting in the following messages on the joiner server's
logs.

    [ERROR] [MY-011640] [Repl] Plugin group_replication reported: 'Timeout on wait for view after joining group'
    [ERROR] [MY-011735] [Repl] Plugin group_replication reported: '[GCS] The member is already leaving or joining a group.'

Solution
--------
This patch adds two new variables

1. group_replication_xcom_ssl_socket_timeout

   It is a file-descriptor level timeout in seconds for both accept() and
   SSL_accept() calls when group replication is listening on the xcom port.
   When set to a valid value, say for example 5 seconds, both accept() and
   SSL_accept() return after 5 seconds. The default value has been set to 0
   (waits infinitely) for backward compatibility. This variable is effective
   only when GR is configred with SSL.

2. group_replication_xcom_ssl_accept_retries

   It defines the number of retries to be performed before closing the socket.
   For each retry the server thread calls SSL_accept()  with timeout defined by
   the group_replication_xcom_ssl_socket_timeout for the SSL handshake process
   once the connection has been accepted by the first accept() call. The
   default value has been set to 10. This variable is effective only when GR is
   configred with SSL.

Note:
- Both of the above variables are dynamically configurable, but will become
  effective only on START GROUP_REPLICATION.
percona-ysorokin pushed a commit that referenced this pull request Jan 23, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    #5  MYSQL_BIN_LOG::change_stage
    #6  MYSQL_BIN_LOG::ordered_commit
    #7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    #5  Gtid_state::update_commit_group
    #6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    #7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
percona-ysorokin pushed a commit that referenced this pull request Feb 16, 2024
Part of WL#15135 Certificate Architecture

In NDB data and management nodes, initialize TLS at startup time.

ndbd and ndb_mgmd now take option --ndb-tls-search-path.

Change-Id: I73e29c10af9d5366c53f86106ec82feac33c4bdf
percona-ysorokin pushed a commit that referenced this pull request Feb 16, 2024
On the client side, in Transporter::connect_client(), check the
TLS negotiation result, initiate the TLS handshake, and perform
certificate authorization checks.

On the server side, in TransporterService::newSession(), check the
TLS negotiation result and complete the TLS handshake. Then in
TransporterRegistry::connect_server(), after receiving the client's
hello message, perform certificate authorization checks.

The connect and disconnect impls in TCP_Transporter are responsible
for maintaining the m_encrypted flag and the certificate table. In
TCP_Transporter::connect_common(), locking is enabled around the
SSL object; the lock must be acquired in order to send data, receive
data, or close the socket.

Change-Id: I9758adc88e8f152760bab3df1485556681e88d07
percona-ysorokin pushed a commit that referenced this pull request Feb 16, 2024
Part of WL#15524 Secure NDB Management Protocol using TLS

Run an authorization check prior to every MGM command on the server
side. The authorization check takes three inputs: a current user
auth level associated with the session, a per-command auth level,
and a per-server auth level. It returns an integer result code.

This is implemented for the whole API by providing a specialization of
Parser<T>::run() for MgmApiSession as T. The specialized method
adds a call to the authorization check before running whatever function
is registered to handle the current command.

Per-command auth flags are stored as a ParserRow user_value. The
per-session auth level is stored in MgmApiSession, and the per-server
auth flags are in MgmtSrvr.

Some unused macros are removed; the grammar does not make any use of
aliases, so the new parser routine does not support them.

Change-Id: Id8f35693ee67f559a5e30ec6005d62473f4e8492
percona-ysorokin pushed a commit that referenced this pull request Feb 16, 2024
Post push fix. Add missing calls to close to avoid socket leaks.

Had Change-Id: I4bfc2209e6f976aa5642a3c7fa6f12395e9fdc60

Change-Id: Idbe81f0f70bbf827b673d5842b65a74f79a455f9
percona-ysorokin pushed a commit that referenced this pull request Mar 4, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    #5  MYSQL_BIN_LOG::change_stage
    #6  MYSQL_BIN_LOG::ordered_commit
    #7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    #5  Gtid_state::update_commit_group
    #6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    #7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
percona-ysorokin pushed a commit that referenced this pull request Mar 4, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Merge remote-tracking branch 'venki/PS-9018-8.0-gca' into HEAD

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    #5  MYSQL_BIN_LOG::change_stage
    #6  MYSQL_BIN_LOG::ordered_commit
    #7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    #5  Gtid_state::update_commit_group
    #6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    #7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
percona-ysorokin pushed a commit that referenced this pull request Jun 24, 2024
When built with ASAN, a use-after-free is reported for the TcpPortPool.

AddressSanitizer: heap-use-after-free on address 0x60200019f190 at pc
0x00000076a18d bp 0x7fff51e7d1d0 sp 0x7fff51e7d1c0

    #4 0x770b73 in UniqueId::ProcessUniqueIds::erase(unsigned int)
       ../router/tests/helpers/tcp_port_pool.h:112
    #5 0x770c48 in UniqueId::~UniqueId()
       ../router/tests/helpers/tcp_port_pool.cc:234
    ...
    percona#12 0x82faa3 in testing::UnitTest::~UnitTest()
	../extra/googletest/googletest-release-1.12.0/googletest/src/gtest.cc:5496
    percona#13 0x7f5fe085ace8 in __run_exit_handlers (/lib64/libc.so.6+0x39ce8)

0x60200019f190 is located 0 bytes inside of 16-byte region
[0x60200019f190,0x60200019f1a0)
freed by thread T0 here:
    #0 0x7f5fe3cbd10f in operator delete(void*, unsigned long)
       (/lib64/libasan.so.6+0xb710f)
    #1 0x7f5fe085ace8 in __run_exit_handlers (/lib64/libc.so.6+0x39ce8)

Background
==========

__run_exit_handlers destroys "static" and "global" variables in reverse
order of their creation.

googletest's unit-tests are a static, and the TcpPortPool also has
ProcessUniqueId's which contains the process-wide unique-ids.

At construct: unittest -> tcp-port-pool -> proces-unique-ids
At destruct : process-unique-ids -> tcp-port-pool -> 💥

The use-after-free happens as the process-unique-ids static is
destructed before the tcp-port-pool which tries to its Ids from the
process-unique-ids.

Change
======

- extend the lifetime of the process-unique-ids to after the last use of
  the tcp-port-pool via a std::shared_ptr<>

Change-Id: I75b8b781e1d240f18ca72f2c86182639a7699f06
percona-ysorokin pushed a commit that referenced this pull request Jun 24, 2024
…nt on Windows and posix [#5]

A test program NdbProcess-t for testing argument quoting.

Change-Id: I37842d1109f76f684636eb7c763d2d5a46114aae
percona-ysorokin pushed a commit that referenced this pull request Jun 24, 2024
Problem:
Starting ´ndb_mgmd --bind-address´ may potentially cause abnormal
program termination in MgmtSrvr destructor when ndb_mgmd restart itself.

  Core was generated by `ndb_mgmd --defa'.
  Program terminated with signal SIGABRT,   Aborted.
  #0  0x00007f8ce4066b8f in raise () from /lib64/libc.so.6
  #1  0x00007f8ce4039ea5 in abort () from /lib64/libc.so.6
  #2  0x00007f8ce40a7d97 in __libc_message () from /lib64/libc.so.6
  #3  0x00007f8ce40af08c in malloc_printerr () from /lib64/libc.so.6
  #4  0x00007f8ce40b132d in _int_free () from /lib64/libc.so.6
  #5  0x00000000006e9ffe in MgmtSrvr::~MgmtSrvr (this=0x28de4b0) at
mysql/8.0/storage/ndb/src/mgmsrv/MgmtSrvr.cpp:
890
  #6  0x00000000006ea09e in MgmtSrvr::~MgmtSrvr (this=0x2) at mysql/8.0/
storage/ndb/src/mgmsrv/MgmtSrvr.cpp:849
  #7  0x0000000000700d94 in mgmd_run () at
mysql/8.0/storage/ndb/src/mgmsrv/main.cpp:260
  percona#8  0x0000000000700775 in mgmd_main (argc=<optimized out>,
argv=0x28041d0) at mysql/8.0/storage/ndb/src/
mgmsrv/main.cpp:479

Analysis:
While starting up, the ndb_mgmd will allocate memory for bind_address in
order to potentially rewrite the parameter. When ndb_mgmd restart itself
the memory will be released and dangling pointer causing double free.

Fix:
Drop support for bind_address=[::], it is not documented anywhere, is
not useful and doesn't work.
This means the need to rewrite bind_address is gone and bind_address
argument need neither alloc or free.

Change-Id: I7797109b9d8391394587188d64d4b1f398887e94
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
2 participants