Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sliders demo #4185

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
217 changes: 213 additions & 4 deletions doc/python/sliders.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,10 @@ jupyter:
text_representation:
extension: .md
format_name: markdown
format_version: '1.1'
jupytext_version: 1.1.7
format_version: '1.3'
jupytext_version: 1.14.5
kernelspec:
display_name: Python 3
display_name: Python 3 (ipykernel)
language: python
name: python3
language_info:
Expand All @@ -20,7 +20,7 @@ jupyter:
name: python
nbconvert_exporter: python
pygments_lexer: ipython3
version: 3.7.2
version: 3.8.16
plotly:
description: How to add slider controls to your plots in Python with Plotly.
display_as: controls
Expand Down Expand Up @@ -89,6 +89,215 @@ The method determines which [plotly.js function](https://plot.ly/javascript/plot
- `"animate"`: start or pause an animation


#### Update Method
The `"update"` method should be used when modifying the data and layout sections of the graph.
This example demonstrates how to update the data displayed while simultaneously updating layout attributes such as the annotations.

```python
import plotly.graph_objects as go
import numpy as np

# Create figure
fig = go.Figure()

min_val = 0
max_val = 0

# Add traces, one for each slider step
start = -1
for step in np.arange(start, 5, 0.1):
x_vec=np.arange(0, 10, 0.01) #np.arange(start, 1, 0.1)
y_vec=np.cos(step * np.arange(0, 10, 0.01))
fig.add_trace(
go.Scatter(
visible=False,
line=dict(color="#00CED1", width=4),
name="𝜈 = " + str(step),
x=x_vec,
y=y_vec))
if step == start:
min_val = np.min(y_vec)
max_val = np.max(y_vec)
else:
tmp_min = np.min(y_vec)
tmp_max = np.max(y_vec)
min_val = min(min_val, tmp_min)
max_val = max(max_val, tmp_max)

# Make 10th trace visible
fig.data[10].visible = True

# Add Annotations
annotation_info = [dict(x=1,
y=0,
xref="paper", yref="paper",
text="Min value:<br> %.4f" % min_val,
ax=0, ay=40,
showarrow=False,
xanchor="left", yanchor="bottom"),
dict(x=1,
y=1,
xref="paper", yref="paper",
text="Max value:<br> %.4f" % max_val,
ax=0, ay=-40,
showarrow=False,
xanchor="left", yanchor="top")
]
# Create and add slider
steps = []
for i in range(len(fig.data)):
step = dict(
method="update",
label=str(i),
args=[{"visible": [False] * len(fig.data)},
{"title": "Slider switched to step: " + str(i), # layout attribute
"annotations": annotation_info}], # layout attribute
)
step["args"][0]["visible"][i] = True # Toggle i'th trace to "visible"
steps.append(step)

sliders = [dict(
active=10,
currentvalue={"prefix": "Slider value: "},
pad={"t": 30},
steps=steps
)]

fig.update_layout(
sliders=sliders
)

fig.show()
```

This example demonstrates how sliders can be employed to data filtering. Here we show companies, represented with bars, when values of the outcome variable are above the threshold. The change in trace attributes is associated with the change in layout attribute. The title is updated when the value of the threshold is more than zero.

```python
import plotly.graph_objects as go
import numpy as np
import math

companies = ['Company A','Company B','Company C','Company D','Company E','Company F','Company G','Company H']
outcomes = [7.8, 12.3, 20.4, 8.9, -5.7, -16.3, 10.2, -1.5]

# Create figure
fig = go.Figure()

# Add trace
fig.add_trace(go.Bar(
x=companies,
y=outcomes,
marker=dict(color = "green")
))

min_outcome = math.ceil(min(outcomes))
max_outcome = math.ceil(max(outcomes))

titles = ["Companies and outcomes", "Companies with positive outcomes"]
steps = [dict(method="update",
args=[{'x': [[c for c, o in zip(companies,outcomes) if o>k]], #trace attributes that are updated by each slider step
'y': [[y for y in outcomes if y>k]]}, #trace attributes that are updated by each slider step
{'title': titles[1] if k>0 else titles[0]}], #layout attributes that are updated
label=f"{k}") for k in range(min_outcome, max_outcome)]

sliders = [dict(
active=0,
currentvalue={"prefix": "threshold: "},
steps=steps
)]

fig.update_layout(title=titles[0],
yaxis_title="outcome [mil.]",
sliders=sliders)

fig.show()
```

#### Relayout Method
The `"relayout"` method should be used when modifying layout attributes.
This example demonstrates how to update which groups are in clusters.

```python
import plotly.graph_objects as go
import numpy as np

# Create figure
fig = go.Figure()

x0 = np.random.normal(2, 0.2, 400)
y0 = np.random.normal(2, 0.3, 400)
x1 = np.random.normal(3, 0.1, 600)
y1 = np.random.normal(6, 0.3, 400)
x2 = np.random.normal(4, 0.4, 200)
y2 = np.random.normal(4, 0.5, 200)

# Add traces
fig.add_trace(
go.Scatter(
x=x0,
y=y0,
mode="markers",
marker=dict(color="DarkOrange")
)
)

fig.add_trace(
go.Scatter(
x=x1,
y=y1,
mode="markers",
marker=dict(color="Crimson")
)
)

fig.add_trace(
go.Scatter(
x=x2,
y=y2,
mode="markers",
marker=dict(color="RebeccaPurple")
)
)

initial_cluster = [dict(type="circle",
xref="x", yref="y",
x0=min(x0), y0=min(y0),
x1=max(x0), y1=max(y0),
line=dict(color="DarkOrange"))]
cluster2 = [dict(type="circle",
xref="x", yref="y",
x0=min(x0), y0=min(y0),
x1=max(x1), y1=max(y1),
line=dict(color="Crimson"))]
cluster3 = [dict(type="circle",
xref="x", yref="y",
x0=min(x0), y0=min(y0),
x1=max(x2), y1=max(y1),
line=dict(color="RebeccaPurple"))]

clusters = [[], initial_cluster, cluster2, cluster3]

# Create and add slider
steps = [dict(method="relayout",
args=["shapes", clusters[k]],
label=f"{k}") for k in range(len(clusters))]

sliders = [dict(
active=0,
currentvalue={"prefix": "Groups in cluster: "},
pad={"t": 50},
steps=steps
)]

fig.update_layout(
title_text="Groups",
showlegend=False,
sliders=sliders
)

fig.show()
```

### Sliders in Plotly Express
Plotly Express provide sliders, but with implicit animation using the `"animate"` method described above. The animation play button can be omitted by removing `updatemenus` in the `layout`:

Expand Down