a collection of scripts for standard visualisation tasks
Ruby
Switch branches/tags
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
bin
doc
lib
test-data
.gitignore
Gemfile
LICENSE.txt
README.md
Rakefile
visualisation-utils.gemspec
world.dat

README.md

visualisation-utils

a collection of scripts for standard visualisation tasks

Installing

gnuplot is required for these scripts to work.

The installation depends on your platform, e.g. for Linux:

sudo apt-get install gnuplot

Then you can install the actual visualisation-utils gem:

gem install visualisation-utils

scatter-plot

Prints scatter plots of one or more columns of whitespace separated data using gnuplot as a backend.

scatter-plot -o scatter-plot.png <<'END'
1 1
2 4
3 9
4 16
5 25
END

It will produce the following image:

gui

time-line

The time-line tool visualises events in a time-line. The data is expected in two columns, a timestamp and an event name. The default time format is %Y-%m-%dT%H:%M:%S.

Here is a simple example:

time-line \
    --dimensions 1300,600 \
    -o time-line.png <<'END'
2015-04-24T12:21:32 A
2015-04-24T10:42:35 B
2015-04-23T11:36:26 B
2015-04-23T11:36:26 C
2015-04-22T12:38:54 A
2015-04-22T07:46:29 C
2015-04-21T18:02:01 B
2015-04-21T18:02:01 A
2015-04-17T17:35:21 B
2015-04-17T12:33:23 A
2015-04-17T09:04:37 D
2015-04-17T09:04:37 B
2015-04-17T08:29:31 D
2015-04-16T07:03:51 C
2015-04-15T07:57:23 E
2015-04-15T07:57:23 B
2015-04-15T07:04:13 B
2015-04-14T12:22:07 F
2015-04-13T09:52:25 C
END

It yields the following graph:

heat-map

Prints a heat map visualising the distribution of geo coordinate samples.

heat-map -o heat-map.png <<'END'
38.6,-90.5
38.6,-90.5
40.5,-74.3
34.4,-92.2
42.5,-83.0
34.1,-92.0
33.3,-111.9
34.1,-91.8
34.2,-86.8
END

This will render to the following visualisation:

map

TODO

  • Overriding of autoscale
  • Create nice PNGs
  • Line plots
  • Changing changing the size of the dots
  • Secondary y-axis
  • Bar chart single series
  • Bar chart multiple series
  • Discrete y-values, e.g. to visualise events over time
  • Histogram plotting