InSAR unwrapped surface displacement processing.
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
docs docs: restructuring // rewriting Sep 4, 2018
maintenance
src
test
.coveralls.yml
.gitignore
.travis.yml Update .travis.yml Sep 19, 2017
LICENSE.md
README.md
requirements.txt
setup.cfg
setup.py

README.md

KITE

Build Status Coverage Status

Introduction

This framework is streamlining InSAR displacement processing routines for earthquake inversion through pyrocko and Grond.

Kite features simple and efficient handling of displacement data:

  • Import InSAR displacement data from GAMMA, ISCE, GMTSAR, ROI_PAC and Matlab
  • Efficient quadtree implementation
  • Covariance estimation from noise
  • Interactive GUI

Documentation

Find the documentation at https://pyrocko.org/kite/docs/.

Short Example

from kite import Scene

# Import Matlab container to kite
scene = Scene.import_file('dataset.mat')
scene.spool()  # start the GUI for data inspection and Quadtree parametrisation

# Inspection of covariance parameters
scene.quadtree.covariance.plot()

Installation and Requirement

Requires libraries

  • PyQt5 with OpenGL support
  • PyQtGraph
  • NumPy
  • SciPy

Installation on Debian based distributions through apt

sudo apt-get install python-pyside python-pyside.qtcore python-pyside.qtopengl\
  python-yaml python-scipy python-numpy

Native installation

git clone https://github.com/pyqtgraph/pyqtgraph.git
cd pyqtgraph; sudo python setup.py install
git clone https://github.com/pyrocko/kite.git
cd kite; sudo python setup.py install

Installation through pip

sudo pip install git+https://github.com/pyqtgraph/pyqtgraph.git
sudo pip install git+https://github.com/pyrocko/kite.git

Citation

Recommended citation for Kite

Isken, Marius; Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Daout, Simon; Vasyura-Bathke, Hannes (2017): Kite - Software for Rapid Earthquake Source Optimisation from InSAR Surface Displacement. V. 0.1. GFZ Data Services. http://doi.org/10.5880/GFZ.2.1.2017.002

DOI