Skip to content

Latest commit

 

History

History
1104 lines (879 loc) · 51.8 KB

maven-tooling.adoc

File metadata and controls

1104 lines (879 loc) · 51.8 KB

Building applications with Maven

./attributes.adoc :devtools-no-gradle:

Creating a new project

You can scaffold a new Maven project with:

If you are using the CLI, you can get the list of available options with:

quarkus create app --help

If you are using the Maven command, the following table lists the attributes you can pass to the create command:

Attribute Default Value Description

projectGroupId

org.acme.sample

The group id of the created project

projectArtifactId

mandatory

The artifact id of the created project. Not passing it triggers the interactive mode.

projectVersion

1.0.0-SNAPSHOT

The version of the created project

platformGroupId

io.quarkus.platform

The group id of the target platform.

platformArtifactId

quarkus-bom

The artifact id of the target platform BOM.

platformVersion

The version currently recommended by the Quarkus Extension Registry

The version of the platform you want the project to use. It can also accept a version range, in which case the latest from the specified range will be used.

className

Not created if omitted

The fully qualified name of the generated resource

path

/hello

The resource path, only relevant if className is set.

extensions

[]

The list of extensions to add to the project (comma-separated)

quarkusRegistryClient

true

Whether or not Quarkus should use the online registry to resolve extension catalogs. If this is set to false, the extension catalog will be narrowed to the defined (or default) platform BOM.

By default, the command will target the io.quarkus.platform:quarkus-bom:{quarkus-version} platform release (unless the coordinates of the desired platform release have been specified).

The project is generated in a directory named after the passed artifactId. If the directory already exists, the generation fails.

A pair of Dockerfiles for native and jvm mode are also generated in src/main/docker. Instructions to build the image and run the container are written in those Dockerfiles.

Dealing with extensions

From inside a Quarkus project, you can obtain a list of the available extensions with:

You can add an extension using:

Extensions are passed using a comma-separated list.

The extension name is the GAV name of the extension: e.g. io.quarkus:quarkus-agroal. But you can pass a partial name and Quarkus will do its best to find the right extension. For example, agroal, Agroal or agro will expand to io.quarkus:quarkus-agroal. If no extension is found or if more than one extensions match, you will see a red check mark ❌ in the command result.

$ ./mvnw quarkus:add-extensions -Dextensions=jdbc,agroal,non-exist-ent
[...]
❌ Multiple extensions matching 'jdbc'
     * io.quarkus:quarkus-jdbc-h2
     * io.quarkus:quarkus-jdbc-mariadb
     * io.quarkus:quarkus-jdbc-postgresql
     Be more specific e.g using the exact name or the full gav.
✅ Adding extension io.quarkus:quarkus-agroal
❌ Cannot find a dependency matching 'non-exist-ent', maybe a typo?
[...]

You can install all extensions which match a globbing pattern :

Development mode

Quarkus comes with a built-in development mode. Run your application with:

You can then update the application sources, resources and configurations. The changes are automatically reflected in your running application. This is great to do development spanning UI and database as you see changes reflected immediately.

Dev mode enables hot deployment with background compilation, which means that when you modify your Java files or your resource files and refresh your browser these changes will automatically take effect. This works too for resource files like the configuration property file. The act of refreshing the browser triggers a scan of the workspace, and if any changes are detected the Java files are compiled, and the application is redeployed, then your request is serviced by the redeployed application. If there are any issues with compilation or deployment an error page will let you know.

Hit CTRL+C to stop the application.

Note

By default, quarkus:dev sets the debug host to localhost (for security reasons). If you need to change this, for example to enable debugging on all hosts, you can use the -DdebugHost option like so:

includes/devtools/dev-parameters.adoc :!dev-additional-parameters:

Remote Development Mode

It is possible to use development mode remotely, so that you can run Quarkus in a container environment (such as OpenShift) and have changes made to your local files become immediately visible.

This allows you to develop in the same environment you will actually run your app in, and with access to the same services.

Warning
Do not use this in production. This should only be used in a development environment. You should not run production application in dev mode.

To do this you must build a mutable application, using the mutable-jar format. Set the following properties in application.properties:

quarkus.package.type=mutable-jar (1)
quarkus.live-reload.password=changeit (2)
quarkus.live-reload.url=http://my.cluster.host.com:8080 (3)
  1. This tells Quarkus to use the mutable-jar format. Mutable applications also include the deployment time parts of Quarkus, so they take up a bit more disk space. If run normally they start just as fast and use the same memory as an immutable application, however they can also be started in dev mode.

  2. The password that is used to secure communication between the remote side and the local side.

  3. The URL that your app is going to be running in dev mode at. This is only needed on the local side, so you may want to leave it out of the properties file and specify it as a system property on the command line.

The mutable-jar is then built in the same way that a regular Quarkus jar is built, i.e. by issuing:

Before you start Quarkus on the remote host set the environment variable QUARKUS_LAUNCH_DEVMODE=true. If you are on bare metal you can set it via the export QUARKUS_LAUNCH_DEVMODE=true command and then run the application with the proper java -jar …​ command to run the application.

If you plan on running the application via Docker, then you’ll need to add -e QUARKUS_LAUNCH_DEVMODE=true to the docker run command. When the application starts you should now see the following line in the logs: Profile dev activated. Live Coding activated.

Note
The remote side does not need to include Maven or any other development tools. The normal fast-jar Dockerfile that is generated with a new Quarkus application is all you need. If you are using bare metal launch the Quarkus runner jar, do not attempt to run normal devmode.

Now you need to connect your local agent to the remote host, using the remote-dev command:

./mvnw quarkus:remote-dev -Dquarkus.live-reload.url=http://my-remote-host:8080

Now every time you refresh the browser you should see any changes you have made locally immediately visible in the remote app. This is done via a HTTP based long polling transport, that will synchronize your local workspace and the remote application via HTTP calls.

If you do not want to use the HTTP feature then you can simply run the remote-dev command without specifying the URL. In this mode the command will continuously rebuild the local application, so you can use an external tool such as odo or rsync to sync to the remote application.

All the config options are shown below:

Note
It is recommended you use SSL when using remote dev mode, however even if you are using an unencrypted connection your password is never sent directly over the wire. For the initial connection request the password is hashed with the initial state data, and subsequent requests hash it with a random session id generated by the server and any body contents for POST requests, and the path for DELETE requests, as well as an incrementing counter to prevent replay attacks.

Configuring Development Mode

By default, the Maven plugin picks up compiler flags to pass to javac from maven-compiler-plugin.

If you need to customize the compiler flags used in development mode, add a configuration section to the plugin block and set the compilerArgs property just as you would when configuring maven-compiler-plugin. You can also set source, target, and jvmArgs. For example, to pass --enable-preview to both the JVM and javac:

<plugin>
  <groupId>${quarkus.platform.group-id}</groupId>
  <artifactId>quarkus-maven-plugin</artifactId>
  <version>${quarkus.platform.version}</version>

  <configuration>
    <source>${maven.compiler.source}</source>
    <target>${maven.compiler.target}</target>
    <compilerArgs>
      <arg>--enable-preview</arg>
    </compilerArgs>
    <jvmArgs>--enable-preview</jvmArgs>
  </configuration>

  ...
</plugin>

Debugging

In development mode, Quarkus starts by default with debug mode enabled, listening to port 5005 without suspending the JVM.

This behavior can be changed by giving the debug system property one of the following values:

  • false - the JVM will start with debug mode disabled

  • true - The JVM is started in debug mode and will be listening on port 5005

  • client - the JVM will start in client mode and attempt to connect to localhost:5005

  • {port} - The JVM is started in debug mode and will be listening on {port}

An additional system property suspend can be used to suspend the JVM, when launched in debug mode. suspend supports the following values:

  • y or true - The debug mode JVM launch is suspended

  • n or false - The debug mode JVM is started without suspending

Tip

You can also run a Quarkus application in debug mode with a suspended JVM using:

includes/devtools/dev-parameters.adoc :!dev-additional-parameters:

Then, attach your debugger to localhost:5005.

Import in your IDE

Once you have a project generated, you can import it in your favorite IDE. The only requirement is the ability to import a Maven project.

Eclipse

In Eclipse, click on: File → Import. In the wizard, select: Maven → Existing Maven Project. On the next screen, select the root location of the project. The next screen list the found modules; select the generated project and click on Finish. Done!

In a separated terminal, run:

and enjoy a highly productive environment.

IntelliJ

In IntelliJ:

  1. From inside IntelliJ select File → New → Project From Existing Sources…​ or, if you are on the welcome dialog, select Import project.

  2. Select the project root

  3. Select Import project from external model and Maven

  4. Next a few times (review the different options if needed)

  5. On the last screen click on Finish

In a separated terminal or in the embedded terminal, run:

Enjoy!

Apache NetBeans

In NetBeans:

  1. Select File → Open Project

  2. Select the project root

  3. Click on Open Project

In a separated terminal or the embedded terminal, go to the project root and run:

Enjoy!

Visual Studio Code

Open the project directory in VS Code. If you have installed the Java Extension Pack (grouping a set of Java extensions), the project is loaded as a Maven project.

Logging Quarkus application build classpath tree

Usually, dependencies of an application (which is a Maven project) could be displayed using mvn dependency:tree command. In case of a Quarkus application, however, this command will list only the runtime dependencies of the application. Given that the Quarkus build process adds deployment dependencies of the extensions used in the application to the original application classpath, it could be useful to know which dependencies and which versions end up on the build classpath. Luckily, the quarkus Maven plugin includes the dependency-tree goal which displays the build dependency tree for the application.

Executing ./mvnw quarkus:dependency-tree on your project should result in an output similar to:

[INFO] --- quarkus-maven-plugin:{quarkus-version}:dependency-tree (default-cli) @ getting-started ---
[INFO] org.acme:getting-started:jar:1.0.0-SNAPSHOT
[INFO] └─ io.quarkus:quarkus-resteasy-deployment:jar:{quarkus-version} (compile)
[INFO]    ├─ io.quarkus:quarkus-resteasy-server-common-deployment:jar:{quarkus-version} (compile)
[INFO]    │  ├─ io.quarkus:quarkus-core-deployment:jar:{quarkus-version} (compile)
[INFO]    │  │  ├─ commons-beanutils:commons-beanutils:jar:1.9.3 (compile)
[INFO]    │  │  │  ├─ commons-logging:commons-logging:jar:1.2 (compile)
[INFO]    │  │  │  └─ commons-collections:commons-collections:jar:3.2.2 (compile)
...

The goal accepts the following optional parameters:

  • mode - the default value is prod, i.e. the production build dependency tree. Alternatively, it accepts values test to display the test dependency tree and dev to display the dev mode dependency tree;

  • outputFile - specifies the file to persist the dependency tree to;

  • appendOutput - the default value is false, indicates whether the output to the command should be appended to the file specified with the outputFile parameter or it should be overriden.

Downloading Maven artifact dependencies for offline development and testing

Quarkus extension dependencies are divided into the runtime extension dependencies that end up on the application runtime classpath and the deployment (or build time) extension dependencies that are resolved by Quarkus only at application build time to create the build classpath. Application developers are expected to express dependencies only on the runtime artifacts of Quarkus extensions. As a consequence, the deployment extension dependencies aren’t visible to Maven plugins that aren’t aware of the Quarkus extension dependency model, such as the maven-dependency-plugin, go-offline-maven-plugin, etc. That means those plugins can not be used to pre-download all the application dependencies to be able to build and test the application later in offline mode.

To enable the use-case of building and testing a Quarkus application offline, the quarkus-maven-plugin includes the go-offline goal that could be called from the command line like this:

./mvnw quarkus:go-offline

This goal will resolve all the runtime, build time, test and dev mode dependencies of the application downloading them to the configured local Maven repository.

Building a native executable

Native executables make Quarkus applications ideal for containers and serverless workloads.

Make sure to have GRAALVM_HOME configured and pointing to GraalVM version {graalvm-version} (Make sure to use a Java 11 version of GraalVM). Verify that your pom.xml has the proper native profile (see Maven configuration).

Create a native executable using:

A native executable will be present in target/.

To run Integration Tests on the native executable, make sure to have the proper Maven plugin configured (see Maven configuration) and launch the verify goal.

$ ./mvnw verify -Pnative
...
[quarkus-quickstart-runner:50955]     universe:     391.96 ms
[quarkus-quickstart-runner:50955]      (parse):     904.37 ms
[quarkus-quickstart-runner:50955]     (inline):   1,143.32 ms
[quarkus-quickstart-runner:50955]    (compile):   6,228.44 ms
[quarkus-quickstart-runner:50955]      compile:   9,130.58 ms
[quarkus-quickstart-runner:50955]        image:   2,101.42 ms
[quarkus-quickstart-runner:50955]        write:     803.18 ms
[quarkus-quickstart-runner:50955]      [total]:  33,520.15 ms
[INFO]
[INFO] --- maven-failsafe-plugin:2.22.0:integration-test (default) @ quarkus-quickstart-native ---
[INFO]
[INFO] -------------------------------------------------------
[INFO]  T E S T S
[INFO] -------------------------------------------------------
[INFO] Running org.acme.quickstart.GreetingResourceIT
Executing [/Users/starksm/Dev/JBoss/Quarkus/starksm64-quarkus-quickstarts/getting-started-native/target/quarkus-quickstart-runner, -Dquarkus.http.port=8081, -Dtest.url=http://localhost:8081, -Dquarkus.log.file.path=target/quarkus.log]
2019-02-28 16:52:42,020 INFO  [io.quarkus] (main) Quarkus started in 0.007s. Listening on: http://localhost:8080
2019-02-28 16:52:42,021 INFO  [io.quarkus] (main) Installed features: [cdi, resteasy-reactive]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.081 s - in org.acme.quickstart.GreetingResourceIT
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

...

Build a container friendly executable

The native executable will be specific to your operating system. To create an executable that will run in a container, use the following:

includes/devtools/build-native.adoc :!build-additional-parameters:

The produced executable will be a 64 bit Linux executable, so depending on your operating system it may no longer be runnable. However, it’s not an issue as we are going to copy it to a Docker container. Note that in this case the build itself runs in a Docker container too, so you don’t need to have GraalVM installed locally.

Tip

By default, the native executable will be generated using the quay.io/quarkus/ubi-quarkus-native-image:{graalvm-flavor} Docker image.

If you want to build a native executable with a different Docker image (for instance to use a different GraalVM version), use the -Dquarkus.native.builder-image=<image name> build argument.

The list of the available Docker images can be found on quay.io. Be aware that a given Quarkus version might not be compatible with all the images available.

You can follow the Build a native executable guide as well as Deploying Application to Kubernetes and OpenShift for more information.

Maven configuration

If you have not used project scaffolding, add the following elements in your pom.xml

<properties>
    <skipITs>true</skipITs> (1)
</properties>

<dependencyManagement>
    <dependencies>
        <dependency> (2)
            <groupId>${quarkus.platform.group-id}</groupId>
            <artifactId>quarkus-bom</artifactId>
            <version>${quarkus.platform.version}</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

<build>
    <plugins>
        <plugin> (3)
            <groupId>${quarkus.platform.group-id}</groupId>
            <artifactId>quarkus-maven-plugin</artifactId>
            <version>${quarkus.platform.version}</version>
            <extensions>true</extensions> (4)
            <executions>
                <execution>
                    <goals>
                        <goal>build</goal>
                        <goal>generate-code</goal>
                        <goal>generate-code-tests</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
        <plugin> (5)
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-surefire-plugin</artifactId>
            <version>${surefire-plugin.version}</version>
            <configuration>
                <systemPropertyVariables>
                    <java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
                    <maven.home>${maven.home}</maven.home>
                </systemPropertyVariables>
            </configuration>
        </plugin>
        <plugin> (6)
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-failsafe-plugin</artifactId>
            <version>${surefire-plugin.version}</version>
            <executions>
                <execution>
                    <goals>
                        <goal>integration-test</goal>
                        <goal>verify</goal>
                    </goals>
                    <configuration>
                        <systemPropertyVariables>
                            <native.image.path>${project.build.directory}/${project.build.finalName}-runner</native.image.path>
                            <java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
                            <maven.home>${maven.home}</maven.home>
                        </systemPropertyVariables>
                    </configuration>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

<profiles>
    <profile> (7)
        <id>native</id>
        <properties> (8)
            <quarkus.package.type>native</quarkus.package.type>
            <skipITs>false</skipITs> (9)
        </properties>
    </profile>
</profiles>
  1. Disable running of integration tests (test names *IT and annotated with @QuarkusIntegrationTest) on all builds. To run these tests all the time, either remove this property, set its value to false, or set -DskipITs=false on the command line when you run the build.
    As mentioned below, this is overridden in the native profile.

  2. Optionally use a BOM file to omit the version of the different Quarkus dependencies.

  3. Use the Quarkus Maven plugin that will hook into the build process.

  4. Enabling Maven plugin extensions will register a Quarkus MavenLifecycleParticipant which will make sure the Quarkus classloaders used during the build are properly closed. During the generate-code and generate-code-tests goals the Quarkus application bootstrap is initialized and re-used in the build goal (which actually builds and packages a production application). The Quarkus classloaders will be properly closed in the build goal of the quarkus-maven-plugin. However, if the build fails in between the generate-code or generate-code-tests and build then the Quarkus augmentation classloader won’t be properly closed, which may lead to locking of JAR files that happened to be on the classpath on Windows OS.

  5. Add system properties to maven-surefire-plugin.
    maven.home is only required if you have custom configuration in ${maven.home}/conf/settings.xml.

  6. If you want to test the artifact produced by your build with Integration Tests, add the following plugin configuration. Test names *IT and annotated with @QuarkusIntegrationTest will be run against the artifact produced by the build (JAR file, container image, etc). See the Integration Testing guide for more info.
    maven.home is only required if you have custom configuration in ${maven.home}/conf/settings.xml.

  7. Use a specific native profile for native executable building.

  8. Enable the native package type. The build will therefore produce a native executable.

  9. Always run integration tests when building a native image (test names *IT and annotated with @QuarkusIntegrationTest or @NativeImageTest).

Using fast-jar

fast-jar is the default quarkus package type.

The result of the build is a directory under target named quarkus-app.

You can run the application using: java -jar target/quarkus-app/quarkus-run.jar.

Warning
In order to successfully run the produced jar, you need to have the entire contents of the quarkus-app directory. If any of the files are missing, the application will not start or might not function correctly.
Tip
The fast-jar packaging results in creating an artifact that starts a little faster and consumes slightly less memory than a legacy Quarkus jar because it has indexed information about which dependency jar contains classes and resources. It can thus avoid the lookup into potentially every jar on the classpath that the legacy jar necessitates, when loading a class or resource.

Uber-Jar Creation

Quarkus Maven plugin supports the generation of Uber-Jars by specifying a quarkus.package.type=uber-jar configuration option in your application.properties (or <quarkus.package.type>uber-jar</quarkus.package.type> in your pom.xml).

The original jar will still be present in the target directory but it will be renamed to contain the .original suffix.

When building an Uber-Jar you can specify entries that you want to exclude from the generated jar by using the quarkus.package.ignored-entries configuration option, this takes a comma separated list of entries to ignore.

Uber-Jar creation by default excludes signature files that might be present in the dependencies of the application.

Uber-Jar’s final name is configurable via a Maven’s build settings finalName option.

Working with multi-module projects

By default, Quarkus will not discover CDI beans inside another module.

The best way to enable CDI bean discovery for a module in a multi-module project would be to include the jandex-maven-plugin, unless it is the main application module already configured with the quarkus-maven-plugin, in which case it will indexed automatically.

<build>
  <plugins>
    <plugin>
      <groupId>org.jboss.jandex</groupId>
      <artifactId>jandex-maven-plugin</artifactId>
      <version>{jandex-maven-plugin-version}</version>
      <executions>
        <execution>
          <id>make-index</id>
          <goals>
            <goal>jandex</goal>
          </goals>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>

More information on this topic can be found on the Bean Discovery section of the CDI guide.

Building with a specific configuration profile

Quarkus supports configuration profiles in order to provide a specific configuration according to the target environment.

The profile can be provided directly in the Maven build’s command thanks to the system property quarkus.profile with a command of type:

includes/devtools/build.adoc :!build-additional-parameters:

However it is also possible to specify the profile directly in the POM file of the project using project properties, the Quarkus Maven plugin configuration properties or system properties set in the Quarkus Maven plugin configuration.

In order of precedence (greater precedence first):

1. System properties set in the Quarkus Maven plugin configuration
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  ...
  <build>
    <plugins>
      ...
      <plugin>
        <groupId>${quarkus.platform.group-id}</groupId>
        <artifactId>quarkus-maven-plugin</artifactId>
        <version>${quarkus.platform.version}</version>
        <extensions>true</extensions>
        <configuration>
          <systemProperties>
            <quarkus.profile>prod-aws</quarkus.profile> (1)
          </systemProperties>
        </configuration>
     </plugin>
     ...
    </plugins>
  </build>
...
</project>
  1. The default configuration profile of this project is prod-aws.

2. Quarkus Maven plugin configuration properties
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  ...
  <build>
    <plugins>
      ...
      <plugin>
        <groupId>${quarkus.platform.group-id}</groupId>
        <artifactId>quarkus-maven-plugin</artifactId>
        <version>${quarkus.platform.version}</version>
        <extensions>true</extensions>
        <configuration>
          <properties>
            <quarkus.profile>prod-aws</quarkus.profile> (1)
          </properties>
        </configuration>
     </plugin>
     ...
    </plugins>
  </build>
...
</project>
  1. The default configuration profile of this project is prod-aws.

3. Project properties
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  ...
  <properties>
    <quarkus.profile>prod-aws</quarkus.profile> (1)
    ...
  </properties>
...
</project>
  1. The default configuration profile of this project is prod-aws.

Note
Whatever the approach is chosen, the profile can still be overridden with the quarkus.profile system property or the QUARKUS_PROFILE environment variable.

Building several artifacts from a single module

In some particular use cases, it can be interesting to build several artifacts of your application from the same module. A typical example is when you want to build your application with different configuration profiles.

In that case, it is possible to add as many executions as needed to the Quarkus Maven plugin configuration.

Below is an example of a Quarkus Maven plugin configuration that will produce two builds of the same application: one using the prod-oracle profile and the other one using the prod-postgresql profile.

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  ...
  <build>
    <plugins>
      ...
      <plugin>
        <groupId>${quarkus.platform.group-id}</groupId>
        <artifactId>quarkus-maven-plugin</artifactId>
        <version>${quarkus.platform.version}</version>
        <extensions>true</extensions>
        <executions>
          <execution>
            <id>oracle</id>
            <goals>
              <goal>build</goal>
            </goals>
            <configuration>
              <properties>
                <quarkus.profile>prod-oracle</quarkus.profile> (1)
                <quarkus.package.output-directory>oracle-quarkus-app</quarkus.package.output-directory> (2)
              </properties>
            </configuration>
          </execution>
          <execution>
            <id>postgresql</id>
            <goals>
              <goal>build</goal>
            </goals>
            <configuration>
              <properties>
                <quarkus.profile>prod-postgresql</quarkus.profile> (3)
                <quarkus.package.output-directory>postgresql-quarkus-app</quarkus.package.output-directory> (4)
              </properties>
            </configuration>
          </execution>
        </executions>
     </plugin>
     ...
    </plugins>
  </build>
...
</project>
  1. The default configuration profile of the first execution of the plugin is prod-oracle.

  2. The output directory of the first execution of the plugin is set to oracle-quarkus-app instead of quarkus-app to have a dedicated directory.

  3. The default configuration profile of the second execution of the plugin is prod-postgresql.

  4. The output directory of the second execution of the plugin is set to postgresql-quarkus-app instead of quarkus-app to have a dedicated directory.

Note
With the configuration above, both profile builds will be using the same dependencies, so if we added dependencies on the Oracle and PostgreSQL drivers to the application, both of the drivers will appear in both builds.

To isolate profile-specific dependencies from other profiles, the JDBC drivers could be added as optional dependencies to the application but configured to be included in each profile that requires them, e.g.:

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  ...
  <dependencies>
    ...
    <dependency>
      <groupId>org.postgresql</groupId>
      <artifactId>postgresql</artifactId>
      <version>${postgresql.driver.version}</version>
      <optional>true</optional> (1)
    </dependency>
  </dependencies>
  <build>
    <plugins>
      ...
      <plugin>
        <groupId>${quarkus.platform.group-id}</groupId>
        <artifactId>quarkus-maven-plugin</artifactId>
        <version>${quarkus.platform.version}</version>
        <extensions>true</extensions>
        <executions>
          ...
          <execution>
            <id>postgresql</id>
            <goals>
              <goal>build</goal>
            </goals>
            <configuration>
              <properties>
                <quarkus.profile>prod-postgresql</quarkus.profile>
                <quarkus.package.output-directory>postgresql-quarkus-app</quarkus.package.output-directory>
                <quarkus.package.filter-optional-dependencies>true</quarkus.package.filter-optional-dependencies> (2)
                <quarkus.package.included-optional-dependencies>org.postgresql:postgresql::jar</quarkus.package.included-optional-dependencies> (3)
              </properties>
            </configuration>
          </execution>
        </executions>
     </plugin>
     ...
    </plugins>
  </build>
...
</project>
  1. The JDBC driver of PostgreSQL is defined as an optional dependency

  2. For backward compatibility reasons, it is necessary to explicitly indicate that the optional dependencies need to be filtered.

  3. Only the optional dependency corresponding to the JDBC driver of PostgreSQL is expected in the final artifact.

Configuring the Project Output

There are a several configuration options that will define what the output of your project build will be. These are provided in application.properties the same as any other config property.

The properties are shown below:

Custom test configuration profile in JVM mode

By default, Quarkus tests in JVM mode are run using the test configuration profile. If you are not familiar with Quarkus configuration profiles, everything you need to know is explained in the Configuration Profiles Documentation.

It is however possible to use a custom configuration profile for your tests with the Maven Surefire and Maven Failsafe configurations shown below. This can be useful if you need for example to run some tests using a specific database which is not your default testing database.

<project>
  [...]
  <build>
    <plugins>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-surefire-plugin</artifactId>
        <version>${surefire-plugin.version}</version>
        <configuration>
          <systemPropertyVariables>
            <quarkus.test.profile>foo</quarkus.test.profile> (1)
            <buildDirectory>${project.build.directory}</buildDirectory>
            [...]
          </systemPropertyVariables>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-failsafe-plugin</artifactId>
        <version>${failsafe-plugin.version}</version>
        <configuration>
          <systemPropertyVariables>
            <quarkus.test.profile>foo</quarkus.test.profile> (1)
            <buildDirectory>${project.build.directory}</buildDirectory>
            [...]
          </systemPropertyVariables>
        </configuration>
      </plugin>
    </plugins>
  </build>
  [...]
</project>
  1. The foo configuration profile will be used to run the tests.

Warning

It is not possible to use a custom test configuration profile in native mode for now. Native tests are always run using the prod profile.

Bootstrap Maven properties

Quarkus bootstrap includes a Maven resolver implementation that is used to resolve application runtime and build time dependencies. The Quarkus Maven resolver is initialized from the same Maven command line that launched the build, test or dev mode. Typically, there is no need to add any extra configuration for it. However, there could be cases where an extra configuration option may be necessary to properly resolve application dependencies in test or dev modes, or IDEs.

Maven test plugins (such as surefire and failsafe), for example, are not propagating build system properties to the running tests by default. Which means some of the system properties set by the Maven CLI aren’t available for the Quarkus Maven resolver initialized for the tests, which may result in test dependencies being resolved using different settings than the main Maven build.

Here is a list of system properties the Quarkus bootstrap Maven resolver checks during its initialization.

Property name Default Value Description

maven.home

MAVEN_HOME envvar

The Maven home dir is used to resolve the global settings file unless it was explicitly provided on the command line with the -gs argument

maven.settings

~/m2/settings.xml

Unless the custom settings file has been provided with the -s argument, this property can be used to point the resolver to a custom Maven settings file

maven.repo.local

~/m2/repository

This property could be used to configure a custom local Maven repository directory, if it is different from the default one and the one specified in the settings.xml

maven.top-level-basedir

none

This property may be useful to help the Maven resolver identify the top-level Maven project in the workspace. By default, the Maven resolver will be discovering a project’s workspace by navigating the parent-module POM relationship. However there could be project layouts that are using an aggregator module which isn’t appearing as the parent for its modules. In this case, this property will help the Quarkus Maven resolver to properly discover the workspace.

quarkus.bootstrap.effective-model-builder

false

By default, the Quarkus Maven resolver is reading project’s POMs directly when discovering the project’s layout. While in most cases it works well enough and relatively fast, reading raw POMs has its limitation. E.g. if a POM includes modules in a profile, these modules will not be discovered. This system property enables project’s layout discovery based on the effective POM models, that are properly interpolated, instead of the raw ones. The reason this option is not enabled by default is it may appear to be significantly more time consuming that could increase, e.g. CI testing times. Until there is a better approach found that could be used by default, projects that require it should enable this option.

These system properties above could be added to, e.g., a surefire and/or failsafe plugin configuration as

<project>
  [...]
  <build>
    <plugins>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-surefire-plugin</artifactId>
        <version>${surefire-plugin.version}</version>
        <configuration>
          <systemPropertyVariables>
            <maven.home>${maven.hom}</maven.home> (1)
            <maven.repo.local>${settings.localRepository}</maven.repo.local> (2)
            <maven.settings>${session.request.userSettingsFile.path}</maven.settings> (3)
            <maven.top-level-basedir>${session.topLevelProject.basedir.absolutePath}</maven.top-level-basedir> (4)
            <quarkus.bootstrap.effective-model-builder>true</quarkus.bootstrap.effective-model-builder> (5)
          </systemPropertyVariables>
        </configuration>
      </plugin>
    </plugins>
  </build>
  [...]
</project>
  1. Propagate maven.home system property set by the Maven CLI to the tests

  2. Set the Maven local repository directory for the tests

  3. Set the Maven settings file the tests

  4. Point to the top-level project directory for the tests

  5. Enable effective POM-based project layout discovery

Top-level vs Multi-module project directory

In Maven there appears to be a notion of the top-level project (that is exposed as a project property ${session.topLevelProject.basedir.absolutePath}) and the multi-module project directory (that is available as property ${maven.multiModuleProjectDirectory}). These directories might not always match!

Important
maven.multiModuleProjectDirectory is meant to be consulted by the Maven code itself and not something to be relied upon by user code. So, if you find it useful, use it at your own risk!

The ${maven.multiModuleProjectDirectory} will be resolved to the first directory that contains .mvn directory as its child going up the workspace file system tree starting from the current directory (or the one specified with the -f argument) from which the mvn command was launched. If the .mvn directory was not found, however, the ${maven.multiModuleProjectDirectory} will be pointing to the directory from which the mvn command was launched (or the one targeted with the -f argument).

The ${session.topLevelProject.basedir.absolutePath} will be pointing either to the directory from which the mvn command was launched or to the directory targeted with the -f argument, if it was specified.

Quarkus project info

Note
This goal was introduced in Quarkus Maven plugin 2.7.0.Final and can be used in projects that are based on Quarkus version 2.0.0.Final or later.

The Quarkus Maven plugin includes a goal called info (currently marked as 'experimental') that logs Quarkus-specific information about the project, such as: the imported Quarkus platform BOMs and the Quarkus extensions found among the project dependencies. In a multi-module project quarkus:info will assume that the current module, in which it is executed, is the main module of the application.

Note
The report generated by quarkus:info is not currently including the Quarkus Maven plugin information, however it’s planned to be added in the future releases.

Here is an example info output for a simple project:

[aloubyansky@localhost code-with-quarkus]$ mvn quarkus:info
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------< org.acme:code-with-quarkus >---------------------
[INFO] Building code-with-quarkus 1.0.0-SNAPSHOT
[INFO] --------------------------------[ jar ]---------------------------------
[INFO]
[INFO] --- quarkus-maven-plugin:{quarkus-version}:info (default-cli) @ code-with-quarkus ---
[WARNING] quarkus:info goal is experimental, its options and output may change in future versions
[INFO] Quarkus platform BOMs: (1)
[INFO]   io.quarkus.platform:quarkus-bom:pom:{quarkus-version}
[INFO]   io.quarkus.platform:quarkus-kogito-bom:pom:{quarkus-version}
[INFO]   io.quarkus.platform:quarkus-camel-bom:pom:{quarkus-version}
[INFO]
[INFO] Extensions from io.quarkus.platform:quarkus-bom: (2)
[INFO]   io.quarkus:quarkus-resteasy-reactive
[INFO]
[INFO] Extensions from io.quarkus.platform:quarkus-kogito-bom: (3)
[INFO]   org.kie.kogito:kogito-quarkus-decisions
[INFO]
[INFO] Extensions from io.quarkus.platform:quarkus-camel-bom: (4)
[INFO]   org.apache.camel.quarkus:camel-quarkus-rabbitmq
[INFO]
[INFO] Extensions from registry.quarkus.io: (5)
[INFO]   io.quarkiverse.prettytime:quarkus-prettytime:0.2.1
  1. Quarkus platform BOMs imported in the project (BOMs imported by parent POMs will also be reported)

  2. Direct Quarkus extension dependencies managed by the quarkus-bom

  3. Direct Quarkus extension dependencies managed by the quarkus-kogito-bom

  4. Direct Quarkus extension dependencies managed by the quarkus-camel-bom

  5. Direct Quarkus extensions dependencies that aren’t managed by Quarkus BOMs but found in the Quarkus extension registry

Note
quarkus:info will also report Quarkus extensions that aren’t found in the Quarkus extension registries if those are present among the project dependencies, indicating they have an 'unknown origin'.

Highlighing misaligned versions

quarkus:info will also highlight basic Quarkus dependency version misalignments, in case they are detected. For example, if we modify the project mentioned above by removing the kogito-quarkus-decisions extension from the dependencies and adding a 2.6.3.Final <version> element to the quarkus-resteasy-reactive dependency that is managed by the quarkus-bom and then run quarkus:info again, we’ll see something like:

[INFO] --- quarkus-maven-plugin:{quarkus-version}:info (default-cli) @ code-with-quarkus ---
[WARNING] quarkus:info goal is experimental, its options and output may change in future versions
[INFO] Quarkus platform BOMs:
[INFO]   io.quarkus.platform:quarkus-bom:pom:{quarkus-version}
[INFO]   io.quarkus.platform:quarkus-kogito-bom:pom:{quarkus-version} | unnecessary (1)
[INFO]   io.quarkus.platform:quarkus-camel-bom:pom:{quarkus-version}
[INFO]
[INFO] Extensions from io.quarkus.platform:quarkus-bom:
[INFO]   io.quarkus:quarkus-resteasy-reactive:2.6.3.Final | misaligned (2)
[INFO]
[INFO] Extensions from io.quarkus.platform:quarkus-camel-bom:
[INFO]   org.apache.camel.quarkus:camel-quarkus-rabbitmq
[INFO]
[INFO] Extensions from registry.quarkus.io:
[INFO]   io.quarkiverse.prettytime:quarkus-prettytime:0.2.1
[INFO]
[WARNING] Non-recommended Quarkus platform BOM and/or extension versions were found. For more details, please, execute 'mvn quarkus:update -Drectify'
  1. The quarkus-kogito-bom import is now reported as 'unnecessary' since none of the Quarkus extensions it includes are found among the project dependencies

  2. The version 2.6.3.Final of the quarkus-resteasy-reactive is now reported as being misaligned with the version managed by the Quarkus platform BOM imported in the project, which is {quarkus-version}

Quarkus project update

Note
This goal was introduced in Quarkus Maven plugin 2.7.0.Final and can be used in projects that are based on Quarkus version 2.0.0.Final or later.

The quarkus:update goal (currently marked as 'experimental') provided by the Quarkus Maven plugin can be used to check whether there are Quarkus-related updates available for a project, such as: new releases of the relevant Quarkus platform BOMs and non-platform Quarkus extensions present in the project. In a multi-module project the update goal is meant to be executed from the main Quarkus application module.

Important
At this point, the quarkus:update goal does not actually apply the recommended updates but simply reports what they are and how to apply them manually.
Note
The Quarkus Maven plugin version isn’t currently included in the update report, however it’s planned to be added in the future releases.

The way quarkus:update works, first, all the direct Quarkus extension dependencies of the project are collected (those that are managed by the Quarkus platform BOMs and those that aren’t but found in the Quarkus extension registries). Then the configured Quarkus extension registries (typically the registry.quarkus.io) will be queried for the latest recommended/supported Quarkus platform versions and non-platform Quarkus extensions compatible with them. The algorithm will then select the latest compatible combination of all the extensions found in the project, assuming such a combination actually exists. Otherwise, no updates will be suggested.

Assuming we have a project including Kogito, Camel and core Quarkus extensions available in the Quarkus platform based on Quarkus 2.7.1.Final, the output of the quarkus:update would look like:

[aloubyansky@localhost code-with-quarkus]$ mvn quarkus:update
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------< org.acme:code-with-quarkus >---------------------
[INFO] Building code-with-quarkus 1.0.0-SNAPSHOT
[INFO] --------------------------------[ jar ]---------------------------------
[INFO]
[INFO] --- quarkus-maven-plugin:{quarkus-version}:update (default-cli) @ code-with-quarkus ---
[WARNING] quarkus:update goal is experimental, its options and output might change in future versions
[INFO]
[INFO] Recommended Quarkus platform BOM updates: (1)
[INFO] Update: io.quarkus.platform:quarkus-bom:pom:2.7.1.Final -> {quarkus-version}
[INFO] Update: io.quarkus.platform:quarkus-kogito-bom:pom:2.7.1.Final -> {quarkus-version}
[INFO] Update: io.quarkus.platform:quarkus-camel-bom:pom:2.7.1.Final -> {quarkus-version}
  1. A list of currently recommended Quarkus platform BOM updates

Note
Typically, a single project property will be used to manage all the Quarkus platform BOMs but the implementation isn’t currently smart enough to point that out and will report updates for each BOM individually.

If we modify the project to remove all the Kogito extensions from the project, change the version of the quarkus-resteasy-reactive extension to 2.6.3.Final and downgrade quarkus-prettytime which is not included in the Quarkus platform BOMs to 0.2.0, quarkus:update will report something like:

[INFO] Recommended Quarkus platform BOM updates: (1)
[INFO] Update: io.quarkus.platform:quarkus-bom:pom:2.7.1.Final -> {quarkus-version}
[INFO] Update: io.quarkus.platform:quarkus-camel-bom:pom:2.7.1.Final -> {quarkus-version}
[INFO] Remove: io.quarkus.platform:quarkus-kogito-bom:pom:2.7.1.Final (2)
[INFO]
[INFO] Extensions from io.quarkus.platform:quarkus-bom:
[INFO] Update: io.quarkus:quarkus-resteasy-reactive:2.6.3.Final -> remove version (managed) (3)
[INFO]
[INFO] Extensions from registry.quarkus.io:
[INFO] Update: io.quarkiverse.prettytime:quarkus-prettytime:0.2.0 -> 0.2.1 (4)
  1. A list of the currently recommended Quarkus platform BOM updates for the project

  2. Given that the project does not include any Kogito extensions, the BOM import is recommended to be removed

  3. An outdated version of the quarkus-resteasy-reactive is recommended to be removed in favor of the one managed by the quarkus-bom

  4. The latest compatible version of the quarkus-prettytime extension

Quarkus project rectify

As was mentioned above, quarkus:info, besides reporting Quarkus platform and extension versions, performs a quick version alignment check, to make sure the extension versions used in the project are compatible with the imported Quarkus platform BOMs. If misalignments are detected, the following warning message will be logged:

[WARNING] Non-recommended Quarkus platform BOM and/or extension versions were found. For more details, please, execute 'mvn quarkus:update -Drectify'

When the rectify option is enabled, quarkus:update, instead of suggesting the latest recommended Quarkus version updates, will log update instructions to simply align the extension dependency versions found in the project with the currently imported Quarkus platform BOMs.