Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
58 lines (53 sloc)
2.27 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pickle | |
from clize import run | |
import os | |
import pandas as pd | |
import numpy as np | |
from helper.utils import generate_run_folder | |
import logging | |
def run_custom_model(input_folder, | |
*, | |
debug=False, | |
dataset_file, | |
model_file): | |
"""Run a saved model on a new dataset | |
:param input_folder: Folder path of the input NEW raw dataset. | |
:param debug: Use this flag to output results to 'debug_run' folder of the NEW raw dataset. | |
:param dataset_file: the filename (not the full path) of a dataset file after running "prepare_validation_sets.py". | |
:param model_file: the full path of the model file to test | |
""" | |
output_folder = generate_run_folder(input_folder, debug=debug) | |
result_folder = os.path.join(output_folder, 'tests') | |
os.makedirs(result_folder, exist_ok=True) | |
dataset_path = os.path.join(output_folder, 'datasets', dataset_file) | |
feature_df = pd.read_csv( | |
dataset_path, parse_dates=[0, 1], infer_datetime_format=True) | |
feature_df = feature_df.dropna() | |
indexed_feature_df = feature_df.set_index([ | |
'START_TIME', 'STOP_TIME', 'PID', 'SID', 'SENSOR_PLACEMENT', | |
'FEATURE_TYPE' | |
]) | |
p_df = feature_df | |
with open(model_file, 'rb') as mf: | |
model_bundle = pickle.load(mf) | |
feature_order = model_bundle['feature_order'] | |
ordered_df = indexed_feature_df.loc[:, feature_order] | |
X = ordered_df.values | |
name = model_bundle['name'] | |
class_labels = model_bundle['model'].classes_ | |
try: | |
scaled_X = model_bundle['scaler'].transform(X) | |
predicted_labels = model_bundle['model'].predict(scaled_X) | |
except: | |
predicted_labels = X.shape[0] * [np.nan] | |
p_df['PREDICTION'] = predicted_labels | |
result_path = os.path.join( | |
result_folder, | |
dataset_file.replace('dataset.csv', | |
name.lower() + '_prediction.csv')) | |
p_df.to_csv(result_path, index=False) | |
logging.info('Saved ' + result_path) | |
if __name__ == '__main__': | |
# example | |
# run_custom_model('./muss_data', model_file='./muss_data\DerivedCrossParticipants\product_run\models\DW_DA.MO.muss_3_postures_svm_model.pkl', dataset_file='DW_DA.MO.dataset.csv') | |
run(run_custom_model) |