Skip to content

Commit

Permalink
[RLlib] New Offline RL Algorithm: CQL (based on SAC) (#13118)
Browse files Browse the repository at this point in the history
  • Loading branch information
michaelzhiluo committed Dec 30, 2020
1 parent 33089c4 commit 42cd414
Show file tree
Hide file tree
Showing 6 changed files with 417 additions and 6 deletions.
8 changes: 8 additions & 0 deletions rllib/agents/cql/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
from ray.rllib.agents.cql.cql import CQLTrainer, CQL_DEFAULT_CONFIG
from ray.rllib.agents.cql.cql_torch_policy import CQLTorchPolicy

__all__ = [
"CQL_DEFAULT_CONFIG",
"CQLTorchPolicy",
"CQLTrainer",
]
51 changes: 51 additions & 0 deletions rllib/agents/cql/cql.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
"""CQL (derived from SAC).
"""
from typing import Optional, Type

from ray.rllib.agents.sac.sac import SACTrainer, \
DEFAULT_CONFIG as SAC_CONFIG
from ray.rllib.agents.cql.cql_torch_policy import CQLTorchPolicy
from ray.rllib.utils.typing import TrainerConfigDict
from ray.rllib.policy.policy import Policy
from ray.rllib.utils import merge_dicts

# yapf: disable
# __sphinx_doc_begin__
CQL_DEFAULT_CONFIG = merge_dicts(
SAC_CONFIG, {
# You should override this to point to an offline dataset.
"input": "sampler",
# Number of iterations with Behavior Cloning Pretraining
"bc_iters": 20000,
# CQL Loss Temperature
"temperature": 1.0,
# Num Actions to sample for CQL Loss
"num_actions": 10,
# Whether to use the Langrangian for Alpha Prime (in CQL Loss)
"lagrangian": False,
# Lagrangian Threshold
"lagrangian_thresh": 5.0,
# Min Q Weight multiplier
"min_q_weight": 5.0,
})
# __sphinx_doc_end__
# yapf: enable


def validate_config(config: TrainerConfigDict):
if config["framework"] == "tf":
raise ValueError("Tensorflow CQL not implemented yet!")


def get_policy_class(config: TrainerConfigDict) -> Optional[Type[Policy]]:
if config["framework"] == "torch":
return CQLTorchPolicy


CQLTrainer = SACTrainer.with_updates(
name="CQL",
default_config=CQL_DEFAULT_CONFIG,
validate_config=validate_config,
default_policy=CQLTorchPolicy,
get_policy_class=get_policy_class,
)
301 changes: 301 additions & 0 deletions rllib/agents/cql/cql_torch_policy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
"""
PyTorch policy class used for CQL.
"""
import numpy as np
import gym
import logging
from typing import Dict, List, Tuple, Type, Union

import ray
import ray.experimental.tf_utils
from ray.rllib.agents.a3c.a3c_torch_policy import apply_grad_clipping
from ray.rllib.agents.sac.sac_tf_policy import postprocess_trajectory, \
validate_spaces
from ray.rllib.agents.sac.sac_torch_policy import _get_dist_class, stats, \
build_sac_model_and_action_dist, optimizer_fn, ComputeTDErrorMixin, \
TargetNetworkMixin, setup_late_mixins, action_distribution_fn
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.typing import LocalOptimizer, TensorType, \
TrainerConfigDict
from ray.rllib.utils.torch_ops import convert_to_torch_tensor

torch, nn = try_import_torch()
F = nn.functional

logger = logging.getLogger(__name__)


# Returns policy tiled actions and log probabilities for CQL Loss
def policy_actions_repeat(model, action_dist, obs, num_repeat=1):
obs_temp = obs.unsqueeze(1).repeat(1, num_repeat, 1).view(
obs.shape[0] * num_repeat, obs.shape[1])
policy_dist = action_dist(model.get_policy_output(obs_temp), model)
actions = policy_dist.sample()
log_p = torch.unsqueeze(policy_dist.logp(actions), -1)
return actions, log_p.squeeze()


def q_values_repeat(model, obs, actions, twin=False):
action_shape = actions.shape[0]
obs_shape = obs.shape[0]
num_repeat = int(action_shape / obs_shape)
obs_temp = obs.unsqueeze(1).repeat(1, num_repeat, 1).view(
obs.shape[0] * num_repeat, obs.shape[1])
if twin:
preds = model.get_q_values(obs_temp, actions)
else:
preds = model.get_twin_q_values(obs_temp, actions)
preds = preds.view(obs.shape[0], num_repeat, 1)
return preds


def cql_loss(policy: Policy, model: ModelV2,
dist_class: Type[TorchDistributionWrapper],
train_batch: SampleBatch) -> Union[TensorType, List[TensorType]]:
print(policy.cur_iter)
policy.cur_iter += 1
# For best performance, turn deterministic off
deterministic = policy.config["_deterministic_loss"]
twin_q = policy.config["twin_q"]
discount = policy.config["gamma"]
action_low = model.action_space.low[0]
action_high = model.action_space.high[0]

# CQL Parameters
bc_iters = policy.config["bc_iters"]
cql_temp = policy.config["temperature"]
num_actions = policy.config["num_actions"]
min_q_weight = policy.config["min_q_weight"]
use_lagrange = policy.config["lagrangian"]
target_action_gap = policy.config["lagrangian_thresh"]

obs = train_batch[SampleBatch.CUR_OBS]
actions = train_batch[SampleBatch.ACTIONS]
rewards = train_batch[SampleBatch.REWARDS]
next_obs = train_batch[SampleBatch.NEXT_OBS]
terminals = train_batch[SampleBatch.DONES]

model_out_t, _ = model({
"obs": obs,
"is_training": True,
}, [], None)

model_out_tp1, _ = model({
"obs": next_obs,
"is_training": True,
}, [], None)

target_model_out_tp1, _ = policy.target_model({
"obs": next_obs,
"is_training": True,
}, [], None)

action_dist_class = _get_dist_class(policy.config, policy.action_space)
action_dist_t = action_dist_class(
model.get_policy_output(model_out_t), policy.model)
policy_t = action_dist_t.sample() if not deterministic else \
action_dist_t.deterministic_sample()
log_pis_t = torch.unsqueeze(action_dist_t.logp(policy_t), -1)

# Unlike original SAC, Alpha and Actor Loss are computed first.
# Alpha Loss
alpha_loss = -(model.log_alpha *
(log_pis_t + model.target_entropy).detach()).mean()

# Policy Loss (Either Behavior Clone Loss or SAC Loss)
alpha = torch.exp(model.log_alpha)
if policy.cur_iter >= bc_iters:
min_q = model.get_q_values(model_out_t, policy_t)
if twin_q:
twin_q = model.get_twin_q_values(model_out_t, policy_t)
min_q = torch.min(min_q, twin_q)
actor_loss = (alpha.detach() * log_pis_t - min_q).mean()
else:
bc_logp = action_dist_t.logp(actions)
actor_loss = (alpha * log_pis_t - bc_logp).mean()

# Critic Loss (Standard SAC Critic L2 Loss + CQL Entropy Loss)
# SAC Loss
action_dist_tp1 = action_dist_class(
model.get_policy_output(model_out_tp1), policy.model)
policy_tp1 = action_dist_tp1.sample() if not deterministic else \
action_dist_tp1.deterministic_sample()

# Q-values for the batched actions.
q_t = model.get_q_values(model_out_t, train_batch[SampleBatch.ACTIONS])
q_t = torch.squeeze(q_t, dim=-1)
if twin_q:
twin_q_t = model.get_twin_q_values(model_out_t,
train_batch[SampleBatch.ACTIONS])
twin_q_t = torch.squeeze(twin_q_t, dim=-1)

# Target q network evaluation.
q_tp1 = policy.target_model.get_q_values(target_model_out_tp1, policy_tp1)
if twin_q:
twin_q_tp1 = policy.target_model.get_twin_q_values(
target_model_out_tp1, policy_tp1)
# Take min over both twin-NNs.
q_tp1 = torch.min(q_tp1, twin_q_tp1)
q_tp1 = torch.squeeze(input=q_tp1, dim=-1)
q_tp1 = (1.0 - terminals.float()) * q_tp1

# compute RHS of bellman equation
q_t_target = (
rewards + (discount**policy.config["n_step"]) * q_tp1).detach()

# Compute the TD-error (potentially clipped), for priority replay buffer
base_td_error = torch.abs(q_t - q_t_target)
if twin_q:
twin_td_error = torch.abs(twin_q_t - q_t_target)
td_error = 0.5 * (base_td_error + twin_td_error)
else:
td_error = base_td_error
critic_loss = [nn.MSELoss()(q_t, q_t_target)]
if twin_q:
critic_loss.append(nn.MSELoss()(twin_q_t, q_t_target))

# CQL Loss (We are using Entropy version of CQL (the best version))
rand_actions = convert_to_torch_tensor(
torch.FloatTensor(actions.shape[0] * num_actions,
actions.shape[-1]).uniform_(action_low, action_high))
curr_actions, curr_logp = policy_actions_repeat(model, action_dist_class,
obs, num_actions)
next_actions, next_logp = policy_actions_repeat(model, action_dist_class,
next_obs, num_actions)
curr_logp = curr_logp.view(actions.shape[0], num_actions, 1)
next_logp = next_logp.view(actions.shape[0], num_actions, 1)

q1_rand = q_values_repeat(model, model_out_t, rand_actions)
q1_curr_actions = q_values_repeat(model, model_out_t, curr_actions)
q1_next_actions = q_values_repeat(model, model_out_t, next_actions)

if twin_q:
q2_rand = q_values_repeat(model, model_out_t, rand_actions, twin=True)
q2_curr_actions = q_values_repeat(
model, model_out_t, curr_actions, twin=True)
q2_next_actions = q_values_repeat(
model, model_out_t, next_actions, twin=True)

random_density = np.log(0.5**curr_actions.shape[-1])
cat_q1 = torch.cat([
q1_rand - random_density, q1_next_actions - next_logp.detach(),
q1_curr_actions - curr_logp.detach()
], 1)
if twin_q:
cat_q2 = torch.cat([
q2_rand - random_density, q2_next_actions - next_logp.detach(),
q2_curr_actions - curr_logp.detach()
], 1)

min_qf1_loss = torch.logsumexp(
cat_q1 / cql_temp, dim=1).mean() * min_q_weight * cql_temp
min_qf1_loss = min_qf1_loss - q_t.mean() * min_q_weight
if twin_q:
min_qf2_loss = torch.logsumexp(
cat_q2 / cql_temp, dim=1).mean() * min_q_weight * cql_temp
min_qf2_loss = min_qf2_loss - twin_q_t.mean() * min_q_weight

if use_lagrange:
alpha_prime = torch.clamp(
model.log_alpha_prime.exp(), min=0.0, max=1000000.0)[0]
min_qf1_loss = alpha_prime * (min_qf1_loss - target_action_gap)
if twin_q:
min_qf2_loss = alpha_prime * (min_qf2_loss - target_action_gap)
alpha_prime_loss = 0.5 * (-min_qf1_loss - min_qf2_loss)
else:
alpha_prime_loss = -min_qf1_loss

cql_loss = [min_qf2_loss]
if twin_q:
cql_loss.append(min_qf2_loss)

critic_loss[0] += min_qf1_loss
if twin_q:
critic_loss[1] += min_qf2_loss

# Save for stats function.
policy.q_t = q_t
policy.policy_t = policy_t
policy.log_pis_t = log_pis_t
policy.td_error = td_error
policy.actor_loss = actor_loss
policy.critic_loss = critic_loss
policy.alpha_loss = alpha_loss
policy.log_alpha_value = model.log_alpha
policy.alpha_value = alpha
policy.target_entropy = model.target_entropy
# CQL Stats
policy.cql_loss = cql_loss
if use_lagrange:
policy.log_alpha_prime_value = model.log_alpha_prime[0]
policy.alpha_prime_value = alpha_prime
policy.alpha_prime_loss = alpha_prime_loss

# Return all loss terms corresponding to our optimizers.
if use_lagrange:
return tuple([policy.actor_loss] + policy.critic_loss +
[policy.alpha_loss] + [policy.alpha_prime_loss])
return tuple([policy.actor_loss] + policy.critic_loss +
[policy.alpha_loss])


def cql_stats(policy: Policy,
train_batch: SampleBatch) -> Dict[str, TensorType]:
sac_dict = stats(policy, train_batch)
sac_dict["cql_loss"] = torch.mean(torch.stack(policy.cql_loss))
if policy.config["lagrangian"]:
sac_dict["log_alpha_prime_value"] = policy.log_alpha_prime_value
sac_dict["alpha_prime_value"] = policy.alpha_prime_value
sac_dict["alpha_prime_loss"] = policy.alpha_prime_loss
return sac_dict


def cql_optimizer_fn(policy: Policy, config: TrainerConfigDict) -> \
Tuple[LocalOptimizer]:
policy.cur_iter = 0
opt_list = optimizer_fn(policy, config)
if config["lagrangian"]:
log_alpha_prime = nn.Parameter(
torch.zeros(1, requires_grad=True).float())
policy.model.register_parameter("log_alpha_prime", log_alpha_prime)
policy.alpha_prime_optim = torch.optim.Adam(
params=[policy.model.log_alpha_prime],
lr=config["optimization"]["critic_learning_rate"],
eps=1e-7, # to match tf.keras.optimizers.Adam's epsilon default
)
return tuple([policy.actor_optim] + policy.critic_optims +
[policy.alpha_optim] + [policy.alpha_prime_optim])
return opt_list


def cql_setup_late_mixins(policy: Policy, obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict) -> None:
setup_late_mixins(policy, obs_space, action_space, config)
if config["lagrangian"]:
policy.model.log_alpha_prime = policy.model.log_alpha_prime.to(
policy.device)


# Build a child class of `TorchPolicy`, given the custom functions defined
# above.
CQLTorchPolicy = build_policy_class(
name="CQLTorchPolicy",
framework="torch",
loss_fn=cql_loss,
get_default_config=lambda: ray.rllib.agents.cql.cql.CQL_DEFAULT_CONFIG,
stats_fn=cql_stats,
postprocess_fn=postprocess_trajectory,
extra_grad_process_fn=apply_grad_clipping,
optimizer_fn=cql_optimizer_fn,
validate_spaces=validate_spaces,
before_loss_init=cql_setup_late_mixins,
make_model_and_action_dist=build_sac_model_and_action_dist,
mixins=[TargetNetworkMixin, ComputeTDErrorMixin],
action_distribution_fn=action_distribution_fn,
)
6 changes: 6 additions & 0 deletions rllib/agents/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,11 @@ def _import_bc():
return marwil.BCTrainer


def _import_cql():
from ray.rllib.agents import cql
return cql.CQLTrainer


def _import_ddpg():
from ray.rllib.agents import ddpg
return ddpg.DDPGTrainer
Expand Down Expand Up @@ -128,6 +133,7 @@ def _import_td3():
"APPO": _import_appo,
"ARS": _import_ars,
"BC": _import_bc,
"CQL": _import_cql,
"ES": _import_es,
"DDPG": _import_ddpg,
"DDPPO": _import_ddppo,
Expand Down
Loading

0 comments on commit 42cd414

Please sign in to comment.