Skip to content
/ aemcmc Public
forked from aesara-devs/aemcmc

Miscellaneous MCMC samplers in Aesara

License

Notifications You must be signed in to change notification settings

rlouf/aemcmc

 
 

Repository files navigation

AeMCMC

Pypi Gitter Discord Twitter

AeMCMC automatically constructs samplers for probabilistic models written in Aesara.

A compiler for Bayesian inference.

FeaturesGet startedInstallGet helpContribute

Features

This project is currently in an alpha state, but the core objectives are as follows:

  • Provide utilities that simplify the process of constructing Aesara graphs/functions for posterior and posterior predictive sampling
  • Host a wide array of "exact" posterior sampling steps (e.g. Gibbs steps, scale-mixture/decomposition-based conditional samplers, etc.)
  • Build a framework for identifying and composing said sampler steps and enumerating the possible samplers for an arbitrary model

Overall, we would like this project to serve as a hub for community-sourced specialized samplers and facilitate their general use.

Get started

Using AeMCMC, one can construct sampling steps from a graph containing Aesara RandomVariables. AeMCMC analyzes the model graph and possibly rewrites it to find the most suitable sampler.

AeMCMC can recognize closed-form posteriors; for instance the following Beta-Binomial model amounts to sampling from a Beta distribution:

import aesara
import aemcmc
import aesara.tensor as at

srng = at.random.RandomStream(0)

p_rv = srng.beta(1., 1., name="p")
Y_rv = srng.binomial(10, p_rv, name="Y")

y_vv = Y_rv.clone()
y_vv.name = "y"

sampler, initial_values = aemcmc.construct_sampler({Y_rv: y_vv}, srng)

p_posterior_step = sampler.sample_steps[p_rv]
aesara.dprint(p_posterior_step)
# beta_rv{0, (0, 0), floatX, False}.1 [id A]
#  |RandomGeneratorSharedVariable(<Generator(PCG64) at 0x7F77B2831200>) [id B]
#  |TensorConstant{[]} [id C]
#  |TensorConstant{11} [id D]
#  |Elemwise{add,no_inplace} [id E]
#  | |TensorConstant{1.0} [id F]
#  | |y [id G]
#  |Elemwise{sub,no_inplace} [id H]
#    |Elemwise{add,no_inplace} [id I]
#    | |TensorConstant{1.0} [id F]
#    | |TensorConstant{10} [id J]
#    |y [id G]

sample_fn = aesara.function([y_vv], p_posterior_step)

AeMCMC also contains a database of Gibbs samplers that can be used to sample some models more efficiently than a general-purpose sampler like NUTS would:

import aemcmc
import aesara
import aesara.tensor as at

srng = at.random.RandomStream(0)

X = at.matrix("X")

# Horseshoe prior for `beta_rv`
tau_rv = srng.halfcauchy(0, 1, name="tau")
lmbda_rv = srng.halfcauchy(0, 1, size=X.shape[1], name="lambda")
beta_rv = srng.normal(0, lmbda_rv * tau_rv, size=X.shape[1], name="beta")

a = at.scalar("a")
b = at.scalar("b")
h_rv = srng.gamma(a, b, name="h")

# Negative-binomial regression
eta = X @ beta_rv
p = at.sigmoid(-eta)
Y_rv = srng.nbinom(h_rv, p, name="Y")

y_vv = Y_rv.clone()
y_vv.name = "y"

sampler, initial_values = aemcmc.construct_sampler({Y_rv: y_vv}, srng)

# `sampler.sample_steps` contains the sample step for each random variable
print(sampler.sample_steps[h_rv])
# h_posterior

# `sampler.stages` contains the sampling kernels sorted by scan order
print(sampler.stages)
# {HorseshoeGibbsKernel: [tau, lambda], NBRegressionGibbsKernel: [beta], DispersionGibbsKernel: [h]}

# Build a function that returns new samples
to_sample_rvs = [tau_rv, lmbda_rv, beta_rv, h_rv]
inputs = [a, b, X, y_vv] + [initial_values[rv] for rv in to_sample_rvs]
outputs = [sampler.sample_steps[rv] for rv in to_sample_rvs]
sample_fn = aesara.function(inputs, outputs, updates=sampler.updates)

In case no specialized sampler is found, AeMCMC assigns the NUTS sampler to the remaining variables. AeMCMC reparametrizes the model automatically to improve sampling if needed:

import aemcmc
import aesara
import aesara.tensor as at

srng = at.random.RandomStream(0)
mu_rv = srng.normal(0, 1, name="mu")
sigma_rv = srng.halfnormal(0.0, 1.0, name="sigma")
Y_rv = srng.normal(mu_rv, sigma_rv, name="Y")

y_vv = Y_rv.clone()

sampler, initial_values = aemcmc.construct_sampler({Y_rv: y_vv}, srng)

print(sampler.sample_steps.keys())
# dict_keys([sigma, mu])
print(sampler.stages)
# {NUTSKernel: [sigma, mu]}
print(sampler.parameters)
# {NUTSKernel: (step_size, inverse_mass_matrix)}

# Build a function that returns new samples
step_size, inverse_mass_matrix = list(sampler.parameters.values())[0]
inputs = [
    initial_values[mu_rv],
    initial_values[sigma_rv],
    y_vv,
    step_size,
    inverse_mass_matrix
]
outputs = [sampler.sample_steps[mu_rv], sampler.sample_steps[sigma_rv]]
sample_fn = aesara.function(inputs, outputs, updates=sampler.updates)

Install

The latest release of AeMCMC can be installed from PyPI using pip:

pip install aemcmc

Or via conda-forge:

conda install -c conda-forge aemcmc

The nightly (bleeding edge) version of aemcmc can be installed using pip:

pip install aemcmc-nightly

Get help

Report bugs by opening an issue. If you have a question regarding the usage of AeMCMC, start a discussion. For real-time feedback or more general chat about AeMCMC use our Discord server or Gitter room.

Contribute

AeMCMC welcomes contributions. A good place to start contributing is by looking at the issues.

If you want to implement a new feature, open a discussion or come chat with us on Discord or Gitter.

About

Miscellaneous MCMC samplers in Aesara

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.9%
  • Makefile 1.1%