Skip to content

rrmenon10/ADAPET

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
bin
 
 
 
 
img
 
 
src
 
 
 
 
 
 
 
 
 
 

ADAPET

This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training".

The model improves and simplifies PET with a decoupled label objective and label-conditioned MLM objective.

Model

                       Decoupled Label Loss                                                Label Conditioned Masked Language Modelling

Updates

  • [November 2021] You can run ADAPET on your own dataset now! See instructions here

Setup

Setup environment by running source bin/init.sh. This will

  • Download the FewGLUE and SuperGLUE datasets in data/fewglue/{task} and data/superglue/{task} respectively.
  • Install and setup environment with correct dependencies.

Training

First, create a config JSON file with the necessary hyperparameters. For reference, please see config/BoolQ.json.

Then, to train the model, run the following commands:

sh bin/setup.sh
sh bin/train.sh {config_file}

The output will be in the experiment directory exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/. Once the model has been trained, the following files can be found in the directory:

exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/
    |
    |__ best_model.pt
    |__ dev_scores.json
    |__ config.json
    |__ dev_logits.npy
    |__ src

To aid reproducibility, we provide the JSON files to replicate the paper's results at config/{task_name}.json.

Evaluation

To evaluate the model on the SuperGLUE dev set, run the following command:

sh bin/dev.sh exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/

The dev scores can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/dev_scores.json.

To evaluate the model on the SuperGLUE test set, run the following command.

sh bin/test.sh exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/

The generated predictions can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/test.json.

Train your own ADAPET

  • Setup your dataset in the data folder as
data/{dataset_name}/
    |
    |__ train.jsonl
    |__ val.jsonl
    |__ test.jsonl

Each jsonl file consists of lines of dictionaries. Each dictionaries should have the following format:

{
    "TEXT1": (insert text), 
    "TEXT2": (insert text), 
    "TEXT3": (insert text), 
    ..., 
    "TEXTN": (insert text), 
    "LBL": (insert label)
}
  • Run the experiment
python cli.py --data_dir data/{dataset_name} \
              --pattern '(INSERT PATTERN)' \
              --dict_verbalizer '{"lbl_1": "verbalizer_1", "lbl_2": "verbalizer_2"}'

Here, INSERT PATTERN consists of [TEXT1], [TEXT2], [TEXT3], ..., [LBL]. For example, if the new dataset had two text inputs and one label, a sample pattern would be [TEXT1] and [TEXT2] imply [LBL].

Fine-tuned Models

Our fine-tuned models can be found in this link.

To evaluate these fine-tuned models for different tasks, run the following command:

python src/run_pretrained.py -m {finetuned_model_dir}/{task_name} -c config/{task_name}.json -k pattern={best_pattern_for_task}

The scores can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/dev_scores.json. Note: The best_pattern_for_task can be found in Table 4 of the paper.

Contact

For any doubts or questions regarding the work, please contact Derek (dtredsox@cs.unc.edu) or Rakesh (rrmenon@cs.unc.edu). For any bug or issues with the code, feel free to open a GitHub issue or pull request.

Citation

Please cite us if ADAPET is useful in your work:

@inproceedings{tam2021improving,
          title={Improving and Simplifying Pattern Exploiting Training},
          author={Tam, Derek and Menon, Rakesh R and Bansal, Mohit and Srivastava, Shashank and Raffel, Colin},
          journal={Empirical Methods in Natural Language Processing (EMNLP)},
          year={2021}
}

About

[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •