Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP: Initial commit of DBScan #12

Merged
merged 11 commits into from
Dec 27, 2019
4 changes: 4 additions & 0 deletions linfa-clustering/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -28,3 +28,7 @@ approx = "0.3"
[[bench]]
name = "k_means"
harness = false

[[bench]]
name = "dbscan"
harness = false
38 changes: 38 additions & 0 deletions linfa-clustering/benches/dbscan.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
use criterion::{
black_box, criterion_group, criterion_main, AxisScale, Criterion, ParameterizedBenchmark,
PlotConfiguration,
};
use linfa_clustering::{generate_blobs, Dbscan, DbscanHyperParams};
use ndarray::Array2;
use ndarray_rand::rand::SeedableRng;
use ndarray_rand::rand_distr::Uniform;
use ndarray_rand::RandomExt;
use rand_isaac::Isaac64Rng;

fn dbscan_bench(c: &mut Criterion) {
let mut rng = Isaac64Rng::seed_from_u64(40);
let cluster_sizes = vec![10, 100, 1000, 10000];

let benchmark = ParameterizedBenchmark::new(
"dbscan",
move |bencher, &cluster_size| {
let min_points = 4;
let n_features = 3;
let centroids =
Array2::random_using((min_points, n_features), Uniform::new(-30., 30.), &mut rng);
let dataset = generate_blobs(cluster_size, &centroids, &mut rng);
let hyperparams = DbscanHyperParams::new(min_points).tolerance(1e-3).build();
bencher.iter(|| black_box(Dbscan::predict(&hyperparams, &dataset)));
},
cluster_sizes,
)
.plot_config(PlotConfiguration::default().summary_scale(AxisScale::Logarithmic));
c.bench("dbscan", benchmark);
}

criterion_group! {
name = benches;
config = Criterion::default();
targets = dbscan_bench
}
criterion_main!(benches);
33 changes: 33 additions & 0 deletions linfa-clustering/examples/dbscan.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
use linfa_clustering::{generate_blobs, Dbscan, DbscanHyperParams};
use ndarray::array;
use ndarray_npy::write_npy;
use ndarray_rand::rand::SeedableRng;
use rand_isaac::Isaac64Rng;

// A routine DBScan task: build a synthetic dataset, predict clusters for it
// and save both training data and predictions to disk.
fn main() {
// Our random number generator, seeded for reproducibility
let mut rng = Isaac64Rng::seed_from_u64(42);

// For each our expected centroids, generate `n` data points around it (a "blob")
let expected_centroids = array![[10., 10.], [1., 12.], [20., 30.], [-20., 30.],];
let n = 10000;
let dataset = generate_blobs(n, &expected_centroids, &mut rng);

// Configure our training algorithm
let min_points = 3;
let hyperparams = DbscanHyperParams::new(min_points).tolerance(1e-5).build();

// Infer an optimal set of centroids based on the training data distribution
let cluster_memberships = Dbscan::predict(&hyperparams, &dataset);

// Save to disk our dataset (and the cluster label assigned to each observation)
// We use the `npy` format for compatibility with NumPy
write_npy("clustered_dataset.npy", dataset).expect("Failed to write .npy file");
write_npy(
"clustered_memberships.npy",
cluster_memberships.map(|&x| x.map(|c| c as i64).unwrap_or(-1)),
)
.expect("Failed to write .npy file");
}
File renamed without changes.
188 changes: 188 additions & 0 deletions linfa-clustering/src/dbscan/algorithm.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
use crate::dbscan::hyperparameters::DbscanHyperParams;
use ndarray::{Array1, ArrayBase, ArrayView, Axis, Data, Ix1, Ix2};
use ndarray_stats::DeviationExt;
use serde::{Deserialize, Serialize};

#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
/// DBSCAN (Density-based Spatial Clustering of Applications with Noise)
/// clusters together points which are close together with enough neighbors
/// labelled points which are sparsely neighbored as noise. As points may be
/// part of a cluster or noise the predict method returns
/// `Array1<Option<usize>>`
///
/// As it groups together points in dense regions the number of clusters is
/// determined by the dataset and distance tolerance not the user.
///
/// We provide an implemention of the standard O(N^2) query-based algorithm
/// of which more details can be found in the next section or
/// [here](https://en.wikipedia.org/wiki/DBSCAN).
///
/// The standard DBSCAN algorithm isn't iterative and therefore there's
/// no fit method provided only predict.
///
/// ## The algorithm
///
/// The algorithm iterates over each point in the dataset and for every point
/// not yet assigned to a cluster:
/// - Find all points within the neighborhood of size `tolerance`
/// - If the number of points in the neighborhood is below a minimum size label
/// as noise
/// - Otherwise label the point with the cluster ID and repeat with each of the
/// neighbours
///
/// ## Tutorial
///
/// Let's do a walkthrough of an example running DBSCAN on some data.
///
/// ```
/// use linfa_clustering::{DbscanHyperParams, Dbscan, generate_blobs};
/// use ndarray::{Axis, array, s};
/// use ndarray_rand::rand::SeedableRng;
/// use rand_isaac::Isaac64Rng;
/// use approx::assert_abs_diff_eq;
///
/// // Our random number generator, seeded for reproducibility
/// let seed = 42;
/// let mut rng = Isaac64Rng::seed_from_u64(seed);
///
/// // `expected_centroids` has shape `(n_centroids, n_features)`
/// // i.e. three points in the 2-dimensional plane
/// let expected_centroids = array![[0., 1.], [-10., 20.], [-1., 10.]];
/// // Let's generate a synthetic dataset: three blobs of observations
/// // (100 points each) centered around our `expected_centroids`
/// let observations = generate_blobs(100, &expected_centroids, &mut rng);
///
/// // Let's configure and run our DBSCAN algorithm
/// // We use the builder pattern to specify the hyperparameters
/// // `min_points` is the only mandatory parameter.
/// // If you don't specify the others (e.g. `tolerance`)
/// // default values will be used.
/// let min_points = 3;
/// let hyperparams = DbscanHyperParams::new(min_points)
/// .tolerance(1e-2)
/// .build();
/// // Let's run the algorithm!
/// let clusters = Dbscan::predict(&hyperparams, &observations);
/// // Points are `None` if noise `Some(id)` if belonging to a cluster.
/// ```
///
pub struct Dbscan;

impl Dbscan {
pub fn predict(
hyperparameters: &DbscanHyperParams,
observations: &ArrayBase<impl Data<Elem = f64>, Ix2>,
) -> Array1<Option<usize>> {
let mut cluster_memberships = Array1::from_elem(observations.dim().1, None);
let mut current_cluster_id = 0;
for (i, obs) in observations.axis_iter(Axis(1)).enumerate() {
if cluster_memberships[i].is_some() {
continue;
}
let (neighbor_count, mut search_queue) = find_neighbors(
&obs,
observations,
hyperparameters.tolerance(),
&cluster_memberships,
);
if neighbor_count < hyperparameters.minimum_points() {
continue;
}
// Now go over the neighbours adding them to the cluster
cluster_memberships[i] = Some(current_cluster_id);

while !search_queue.is_empty() {
let candidate = search_queue.remove(0);

let (neighbor_count, mut neighbors) = find_neighbors(
&candidate.1,
observations,
hyperparameters.tolerance(),
&cluster_memberships,
);
if neighbor_count >= hyperparameters.minimum_points() {
cluster_memberships[candidate.0] = Some(current_cluster_id);
search_queue.append(&mut neighbors);
}
}
current_cluster_id += 1;
}
cluster_memberships
}
}
LukeMathWalker marked this conversation as resolved.
Show resolved Hide resolved

fn find_neighbors<'a>(
candidate: &ArrayBase<impl Data<Elem = f64>, Ix1>,
observations: &'a ArrayBase<impl Data<Elem = f64>, Ix2>,
eps: f64,
clusters: &Array1<Option<usize>>,
) -> (usize, Vec<(usize, ArrayView<'a, f64, Ix1>)>) {
let mut res = vec![];
let mut count = 0;
for (i, (obs, cluster)) in observations
.axis_iter(Axis(1))
.zip(clusters.iter())
.enumerate()
{
if candidate.l2_dist(&obs).unwrap() < eps {
count += 1;
if cluster.is_none() {
res.push((i, obs));
}
}
}
(count, res)
}

#[cfg(test)]
mod tests {
use super::*;
use ndarray::{arr1, s, Array2};

#[test]
fn nested_clusters() {
// Create a circuit of points and then a cluster in the centre
// and ensure they are identified as two separate clusters
let params = DbscanHyperParams::new(2).tolerance(1.0).build();

let mut data: Array2<f64> = Array2::zeros((2, 50));
let rising = Array1::linspace(0.0, 8.0, 10);
data.slice_mut(s![0, 0..10]).assign(&rising);
data.slice_mut(s![0, 10..20]).assign(&rising);
data.slice_mut(s![1, 20..30]).assign(&rising);
data.slice_mut(s![1, 30..40]).assign(&rising);

data.slice_mut(s![1, 0..10]).fill(0.0);
data.slice_mut(s![1, 10..20]).fill(8.0);
data.slice_mut(s![0, 20..30]).fill(0.0);
data.slice_mut(s![0, 30..40]).fill(8.0);

data.slice_mut(s![.., 40..]).fill(5.0);

let labels = Dbscan::predict(&params, &data);

assert!(labels.slice(s![..40]).iter().all(|x| x == &Some(0)));
assert!(labels.slice(s![40..]).iter().all(|x| x == &Some(1)));
}

#[test]
fn non_cluster_points() {
let params = DbscanHyperParams::new(4).build();
let mut data: Array2<f64> = Array2::zeros((2, 5));
data.slice_mut(s![.., 0]).assign(&arr1(&[10.0, 10.0]));

let labels = Dbscan::predict(&params, &data);
let expected = arr1(&[None, Some(0), Some(0), Some(0), Some(0)]);
assert_eq!(labels, expected);
}

#[test]
fn dataset_too_small() {
let params = DbscanHyperParams::new(4).build();

let data: Array2<f64> = Array2::zeros((2, 3));

let labels = Dbscan::predict(&params, &data);
assert!(labels.iter().all(|x| x.is_none()));
}
}
60 changes: 60 additions & 0 deletions linfa-clustering/src/dbscan/hyperparameters.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
use serde::{Deserialize, Serialize};

#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
/// The set of hyperparameters that can be specified for the execution of
/// the [DBSCAN algorithm](struct.Dbscan.html).
pub struct DbscanHyperParams {
/// Distance between points for them to be considered neighbours.
tolerance: f64,
LukeMathWalker marked this conversation as resolved.
Show resolved Hide resolved
/// Minimum number of neighboring points a point needs to have to be a core
/// point and not a noise point.
min_points: usize,
}

/// Helper struct used to construct a set of hyperparameters for
pub struct DbscanHyperParamsBuilder {
tolerance: f64,
min_points: usize,
}

impl DbscanHyperParamsBuilder {
pub fn tolerance(mut self, tolerance: f64) -> Self {
self.tolerance = tolerance;
self
}

pub fn build(self) -> DbscanHyperParams {
DbscanHyperParams::build(self.tolerance, self.min_points)
}
}

impl DbscanHyperParams {
pub fn new(min_points: usize) -> DbscanHyperParamsBuilder {
DbscanHyperParamsBuilder {
min_points,
tolerance: 1e-4,
}
}

pub fn tolerance(&self) -> f64 {
self.tolerance
}

pub fn minimum_points(&self) -> usize {
self.min_points
}

fn build(tolerance: f64, min_points: usize) -> Self {
if tolerance <= 0. {
panic!("`tolerance` must be greater than 0!");
}
// There is always at least one neighbor to a point (itself)
if min_points <= 1 {
panic!("`min_points` must be greater than 1!");
}
Self {
tolerance,
min_points,
}
}
}
5 changes: 5 additions & 0 deletions linfa-clustering/src/dbscan/mod.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
mod algorithm;
mod hyperparameters;

pub use algorithm::*;
pub use hyperparameters::*;
2 changes: 2 additions & 0 deletions linfa-clustering/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,11 @@
//! Implementation choices, algorithmic details and a tutorial can be found [here](struct.KMeans.html).
//!
//! Check [here](https://github.com/LukeMathWalker/clustering-benchmarks) for extensive benchmarks against `scikit-learn`'s K-means implementation.
mod dbscan;
#[allow(clippy::new_ret_no_self)]
mod k_means;
mod utils;

pub use dbscan::*;
pub use k_means::*;
pub use utils::*;