Skip to content

Commit

Permalink
Format recId.rzk.md
Browse files Browse the repository at this point in the history
  • Loading branch information
fizruk committed Dec 8, 2023
1 parent 9b78a15 commit 4032724
Showing 1 changed file with 106 additions and 83 deletions.
189 changes: 106 additions & 83 deletions docs/docs/examples/recId.rzk.md
Expand Up @@ -13,40 +13,50 @@ We begin by introducing common HoTT definitions:
#lang rzk-1
-- A is contractible there exists x : A such that for any y : A we have x = y.
#define iscontr (A : U) : U
:= Σ (a : A), (x : A) → a =_{A} x
#define iscontr (A : U)
: U
:= Σ ( a : A) , (x : A) → a =_{A} x
-- A is a proposition if for any x, y : A we have x = y
#define isaprop (A : U) : U
:= (x : A) → (y : A) → x =_{A} y
#define isaprop (A : U)
: U
:= ( x : A) → (y : A) → x =_{A} y
-- A is a set if for any x, y : A the type x =_{A} y is a proposition
#define isaset (A : U) : U
:= (x : A) → (y : A) → isaprop (x =_{A} y)
#define isaset (A : U)
: U
:= ( x : A) → (y : A) → isaprop (x =_{A} y)
-- Non-dependent product of A and B
#define prod (A : U) (B : U) : U
:= Σ (x : A), B
#define prod (A : U) (B : U)
: U
:= Σ ( x : A) , B
-- A function f : A → B is an equivalence
-- if there exists g : B → A
-- such that for all x : A we have g (f x) = x
-- and for all y : B we have f (g y) = y
#define isweq (A : U) (B : U) (f : A → B) : U
:= Σ (g : B → A), prod ((x : A) → g (f x) =_{A} x) ((y : B) → f (g y) =_{B} y)
#define isweq (A : U) (B : U) (f : A → B)
: U
:= Σ ( g : B → A)
, prod
( ( x : A) → g (f x) =_{A} x)
( ( y : B) → f (g y) =_{B} y)
-- Equivalence of types A and B
#define weq (A : U) (B : U) : U
:= Σ (f : A → B), isweq A B f
#define weq (A : U) (B : U)
: U
:= Σ ( f : A → B)
, isweq A B f
-- Transport along a path
#define transport
(A : U)
(C : A → U)
(x y : A)
(p : x =_{A} y)
: C x → C y
:= \ cx → idJ(A, x, (\z q → C z), cx, y, p)
( A : U)
( C : A → U)
( x y : A)
( p : x =_{A} y)
: C x → C y
:= \ cx → idJ(A , x , (\ z q → C z) , cx , y , p)
```

## Relative function extensionality
Expand All @@ -55,26 +65,30 @@ We can now define relative function extensionality. There are several formulatio

```rzk
-- [RS17, Axiom 4.6] Relative function extensionality.
#define relfunext : U
:= (I : CUBE)
→ (ψ : I → TOPE)
→ (φ : ψ → TOPE)
→ (A : ψ → U)
→ ((t : ψ) → iscontr (A t))
→ (a : (t : φ) → A t)
→ (t : ψ) → A t [ φ t ↦ a t]
#define relfunext
: U
:= ( I : CUBE)
→ ( ψ : I → TOPE)
→ ( φ : ψ → TOPE)
→ ( A : ψ → U)
→ ( ( t : ψ) → iscontr (A t))
→ ( a : ( t : φ) → A t)
→ ( t : ψ) → A t [ φ t ↦ a t]
-- [RS17, Proposition 4.8] A (weaker) formulation of function extensionality.
#define relfunext2 : U
:= (I : CUBE)
→ (ψ : I → TOPE)
→ (φ : ψ → TOPE)
→ (A : ψ → U)
→ (a : (t : φ) → A t)
→ (f : (t : ψ) → A t [ φ t ↦ a t ])
→ (g : (t : ψ) → A t [ φ t ↦ a t ])
→ weq (f = g)
((t : ψ) → (f t =_{A t} g t) [ φ t ↦ refl ])
#define relfunext2
: U
:=
( I : CUBE)
→ ( ψ : I → TOPE)
→ ( φ : ψ → TOPE)
→ ( A : ψ → U)
→ ( a : ( t : φ) → A t)
→ ( f : (t : ψ) → A t [ φ t ↦ a t ])
→ ( g : ( t : ψ) → A t [ φ t ↦ a t ])
→ weq
( f = g)
( ( t : ψ) → (f t =_{A t} g t) [ φ t ↦ refl ])
```

## Construction of `recId`
Expand All @@ -93,14 +107,14 @@ First, we define how to restrict an extension type to a subshape:
-- Restrict extension type to a subshape.
#define restrict_phi
(a : (t : φ) → A t)
: (t : I | ψ t ∧ φ t) → A t
( a : ( t : φ) → A t)
: ( t : I | ψ t ∧ φ t) → A t
:= \ t → a t
-- Restrict extension type to a subshape.
#define restrict_psi
(a : (t : ψ) → A t)
: (t : I | ψ t ∧ φ t) → A t
( a : ( t : ψ) → A t)
: ( t : I | ψ t ∧ φ t) → A t
:= \ t → a t
```

Expand All @@ -109,14 +123,16 @@ Then, how to reformulate an `a` (or `b`) as an extension of its restriction:
```rzk
-- Reformulate extension type as an extension of a restriction.
#define ext-of-restrict_psi
(a : (t : ψ) → A t)
: (t : ψ) → A t [ ψ t ∧ φ t ↦ restrict_psi a t ]
( a : ( t : ψ) → A t)
: ( t : ψ)
→ A t [ ψ t ∧ φ t ↦ restrict_psi a t ]
:= a -- type is coerced automatically here
-- Reformulate extension type as an extension of a restriction.
#define ext-of-restrict_phi
(a : (t : φ) → A t)
: (t : φ) → A t [ ψ t ∧ φ t ↦ restrict_phi a t ]
( a : ( t : φ) → A t)
: ( t : φ)
→ A t [ ψ t ∧ φ t ↦ restrict_phi a t ]
:= a -- type is coerced automatically here
```

Expand All @@ -125,17 +141,20 @@ Now, assuming relative function extensionality, we construct a path between rest
```rzk
-- Transform extension of an identity into an identity of restrictions.
#define restricts-path
(a_psi : (t : ψ) → A t)
(a_phi : (t : φ) → A t)
(e : (t : I | ψ t ∧ φ t) → a_psi t = a_phi t)
: restrict_psi a_psi = restrict_phi a_phi
:= (first (second (r I
(\t → ψ t ∧ φ t)
(\t → BOT)
(\t → A t)
(\t → recBOT)
(\t → a_psi t)
(\t → a_phi t)))) e
( a_psi : (t : ψ) → A t)
( a_phi : (t : φ) → A t)
: ( e : (t : I | ψ t ∧ φ t) → a_psi t = a_phi t)
→ restrict_psi a_psi = restrict_phi a_phi
:=
first
( second
( r I
( \ t → ψ t ∧ φ t)
( \ t → BOT)
( \ t → A t)
( \ t → recBOT)
( \ t → a_psi t)
( \ t → a_phi t)))
```

Finally, we bring everything together into `recId`:
Expand All @@ -145,20 +164,22 @@ Finally, we bring everything together into `recId`:
-- recOR(ψ, φ, a, b) demands that for ψ ∧ φ we have a == b (definitionally)
-- (recId ψ φ a b e) demands that e is the proof that a = b (intensionally) for ψ ∧ φ
#define recId uses (r) -- we declare that recId is using r on purpose
(a_psi : (t : ψ) → A t)
(a_phi : (t : φ) → A t)
(e : (t : I | ψ t ∧ φ t) → a_psi t = a_phi t)
: (t : I | ψ t ∨ φ t) → A t
:= \t → recOR(
ψ t ↦ transport
((s : I | ψ s ∧ φ s) → A s)
(\ra → (s : ψ) → A s [ ψ s ∧ φ s ↦ ra s ])
(restrict_psi a_psi)
(restrict_phi a_phi)
(restricts-path a_psi a_phi e)
(ext-of-restrict_psi a_psi)
t,
φ t ↦ ext-of-restrict_phi a_phi t
( a_psi : (t : ψ) → A t)
( a_phi : (t : φ) → A t)
( e : (t : I | ψ t ∧ φ t) → a_psi t = a_phi t)
: ( t : I | ψ t ∨ φ t) → A t
:= \ t → recOR(
ψ t ↦
transport
( ( s : I | ψ s ∧ φ s) → A s)
( \ ra → (s : ψ) → A s [ ψ s ∧ φ s ↦ ra s ])
( restrict_psi a_psi)
( restrict_phi a_phi)
( restricts-path a_psi a_phi e)
( ext-of-restrict_psi a_psi)
( t)
, φ t ↦
ext-of-restrict_phi a_phi t
)
#end construction-of-recId
Expand All @@ -173,18 +194,20 @@ whenever we can show that they are equal on the intersection of shapes:
-- If two extension types are equal along two subshapes,
-- then they are also equal along their union.
#define id-along-border
(r : relfunext2)
(I : CUBE)
(ψ : I → TOPE)
(φ : I → TOPE)
(A : (t : I | ψ t ∨ φ t) → U)
(a b : (t : I | ψ t ∨ φ t) → A t)
(e_psi : (t : ψ) → a t = b t)
(e_phi : (t : φ) → a t = b t)
(border-is-a-set : (t : I | ψ t ∧ φ t) → isaset (A t))
: (t : I | ψ t ∨ φ t) → a t = b t
:= recId r I ψ φ
(\t → a t = b t)
e_psi e_phi
(\t → border-is-a-set t (a t) (b t) (e_psi t) (e_phi t))
( r : relfunext2)
( I : CUBE)
( ψ : I → TOPE)
( φ : I → TOPE)
( A : (t : I | ψ t ∨ φ t) → U)
( a b : (t : I | ψ t ∨ φ t) → A t)
( e_psi : (t : ψ) → a t = b t)
( e_phi : (t : φ) → a t = b t)
( border-is-a-set : (t : I | ψ t ∧ φ t) → isaset (A t))
: ( t : I | ψ t ∨ φ t) → a t = b t
:=
recId r I ψ φ
( \ t → a t = b t)
( e_psi)
( e_phi)
( \ t → border-is-a-set t (a t) (b t) (e_psi t) (e_phi t))
```

0 comments on commit 4032724

Please sign in to comment.