Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fibers of right orthogonal maps have unique extensions #120

Merged
merged 5 commits into from
Oct 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 21 additions & 12 deletions src/hott/11-homotopy-pullbacks.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -590,26 +590,35 @@ product of all fibers.

### Fiber product with singleton type

The relative product of `β : B → A` with a map `Unit → A` corresponding to
`a : A` is nothing but the fiber `fib B A β a`.
The relative product of `f : B → A` with a map `Unit → A` corresponding to
`a : A` is nothing but the fiber `fib B A f a`.

```rzk
#def compute-relative-product-singleton
( A B : U)
( β : B → A)
#def compute-pullback-to-Unit
( B A : U)
( f : B → A)
( a : A)
: Equiv (fib B A f a) (relative-product A B f Unit (\ unit → a))
:=
( ( \ (b , p) → ((b , unit) , p))
, ( ( ( ( \ ((b , unit) , p) → (b, p))
, ( \ _ → refl))
, ( ( \ ((b , unit) , p) → (b, p))
, ( \ _ → refl)))))

#def compute-map-pullback-to-Unit
( B A : U)
( f : B → A)
( a : A)
: Equiv-of-maps
( fib B A β a) (Unit) (\ _ → unit)
( relative-product A B β Unit (\ unit → a))
( Unit) ( second-relative-product A B β Unit (\ unit → a))
( fib B A f a) (Unit) (\ _ → unit)
( relative-product A B f Unit (\ unit → a))
( Unit) ( second-relative-product A B f Unit (\ unit → a))
:=
( ( ( ( \ (b , p) → ((b , unit) , p))
, ( identity Unit))
, \ _ → refl)
, ( ( ( ( \ ((b , unit) , p) → (b, p))
, ( \ _ → refl))
, ( ( \ ((b , unit) , p) → (b, p))
, ( \ _ → refl)))
, ( second (compute-pullback-to-Unit B A f a)
, is-equiv-identity Unit))

```
183 changes: 123 additions & 60 deletions src/simplicial-hott/03-extension-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -723,66 +723,6 @@ retraction to `#!rzk ext-htpy-eq`.
:= first (first (extext I ψ ϕ A a f g))
```

### Functoriality properties of extension types

By extension extensionality, fiberwise equivalences of extension types define
equivalences of extension types. For simplicity, we extend from `#!rzk BOT`.

```rzk
#def equiv-extension-equiv-family uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv ((t : ψ) → A t) ((t : ψ) → B t)
:=
( ( \ a t → (first (famequiv t)) (a t)) ,
( ( ( \ b t → (first (first (second (famequiv t)))) (b t)) ,
( \ a →
eq-ext-htpy
( I)
( ψ)
( \ t → BOT)
( A)
( \ u → recBOT)
( \ t →
first (first (second (famequiv t))) (first (famequiv t) (a t)))
( a)
( \ t → second (first (second (famequiv t))) (a t)))) ,
( ( \ b t → first (second (second (famequiv t))) (b t)) ,
( \ b →
eq-ext-htpy
( I)
( ψ)
( \ t → BOT)
( B)
( \ u → recBOT)
( \ t →
first (famequiv t) (first (second (second (famequiv t))) (b t)))
( b)
( \ t → second (second (second (famequiv t))) (b t))))))
```

Similarly, a fiberwise section of a map `(t : ψ) → A t → B t` induces a section
on extension types

```rzk
#def has-section-extension-has-section-family uses (naiveextext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( f : ( t : ψ) → A t → B t)
( has-fiberwise-section-f : (t : ψ) → has-section (A t ) (B t) (f t))
: has-section ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t))
:=
( ( \ b t → first (has-fiberwise-section-f t) (b t))
, \ b →
( naiveextext I ψ (\ _ → BOT) B (\ _ → recBOT)
( \ t → f t (first (has-fiberwise-section-f t) (b t)))
( \ t → b t)
( \ t → second (has-fiberwise-section-f t) (b t))))
```

### Homotopy extension property

We have a homotopy extension property.
Expand Down Expand Up @@ -1274,3 +1214,126 @@ The converse is of course trivial.

#end general-extension-types
```

## Functoriality of extension types

For simplicity, we only consider extesions of `#!rzk BOT`.

For each map `f : A → B` and each shape inclusion `ϕ ⊂ ψ`, we have a commutative
square.

```
(ψ → A') → (ψ → A)

↓ ↓

(ϕ → A') → (ϕ → A)
```

We can view it as a map of maps either vertically or horizontally.

```rzk
#def map-of-restriction-maps
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( f : (t : ψ) → A t → B t)
: map-of-maps
( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t)
( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t)
:=
( ( ( \ a t → f t (a t))
, ( \ a t → f t (a t)))
, \ _ → refl)

#def map-of-map-extension-type
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( f : (t : ψ) → A t → B t)
: map-of-maps
( (t : ψ) → A t) ( (t : ψ) → B t) (\ a t → f t (a t))
( (t : ϕ) → A t) ( (t : ϕ) → B t) (\ a t → f t (a t))
:=
( ( ( \ a t → a t)
, ( \ b t → b t))
, \ _ → refl)
```

It follows from extension extensionality that if `f : A → B` is an equivalence,
then so is the map of maps `map-of-restriction-maps`.

```rzk
#def is-equiv-extension-is-equiv-family uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( f : (t : ψ) → (A t) → (B t))
( is-equiv-f : (t : ψ) → is-equiv (A t) (B t) (f t))
: is-equiv ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t))
:= ( ( ( \ b t → (first (first (is-equiv-f t))) (b t))
, ( \ a →
eq-ext-htpy I ψ ( \ t → BOT)
( A)
( \ u → recBOT)
( \ t → first (first (is-equiv-f t)) (f t (a t)))
( a)
( \ t → second (first (is-equiv-f t)) (a t))))
, ( ( \ b t → first (second (is-equiv-f t)) (b t))
, ( \ b →
eq-ext-htpy I ψ ( \ t → BOT)
( B)
( \ u → recBOT)
( \ t → f t (first (second (is-equiv-f t)) (b t)))
( b)
( \ t → second (second (is-equiv-f t)) (b t)))))

#def equiv-extension-equiv-family uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv ((t : ψ) → A t) ((t : ψ) → B t)
:=
( ( \ a t → first ( famequiv t) (a t))
, is-equiv-extension-is-equiv-family I ψ A B
( \ t → first (famequiv t))
( \ t → second (famequiv t)))

#def equiv-of-restriction-maps-equiv-family uses (extext)
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A B : ψ → U)
( famequiv : (t : ψ) → (Equiv (A t) (B t)))
: Equiv-of-maps
( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t)
( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t)
:=
( map-of-restriction-maps I ψ ϕ A B (\ t → first (famequiv t))
, ( second (equiv-extension-equiv-family I ψ A B famequiv)
, second ( equiv-extension-equiv-family I
(\ t → ϕ t) (\ t → A t) (\ t → B t) (\ t → famequiv t))))
```

Similarly, a fiberwise section of a map `(t : ψ) → A t → B t` induces a section
on extension types.

```rzk
#def has-section-extension-has-section-family uses (naiveextext)
( I : CUBE)
( ψ : I → TOPE)
( A B : ψ → U)
( f : ( t : ψ) → A t → B t)
( has-fiberwise-section-f : (t : ψ) → has-section (A t ) (B t) (f t))
: has-section ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t))
:=
( ( \ b t → first (has-fiberwise-section-f t) (b t))
, \ b →
( naiveextext I ψ (\ _ → BOT) B (\ _ → recBOT)
( \ t → f t (first (has-fiberwise-section-f t) (b t)))
( \ t → b t)
( \ t → second (has-fiberwise-section-f t) (b t))))
```
Loading