Skip to content

Commit

Permalink
[refactor] move some logic-related code
Browse files Browse the repository at this point in the history
  • Loading branch information
adriaanm committed Feb 13, 2013
1 parent c930a85 commit 7fdc873
Show file tree
Hide file tree
Showing 3 changed files with 358 additions and 352 deletions.
337 changes: 334 additions & 3 deletions src/compiler/scala/tools/nsc/transform/patmat/Logic.scala
Expand Up @@ -52,7 +52,8 @@ trait Logic { self: PatternMatching =>


// http://www.cis.upenn.edu/~cis510/tcl/chap3.pdf // http://www.cis.upenn.edu/~cis510/tcl/chap3.pdf
// http://users.encs.concordia.ca/~ta_ahmed/ms_thesis.pdf // http://users.encs.concordia.ca/~ta_ahmed/ms_thesis.pdf
trait FirstOrderLogic { // propositional logic with constants and equality
trait PropositionalLogic {
class Prop class Prop
case class Eq(p: Var, q: Const) extends Prop case class Eq(p: Var, q: Const) extends Prop


Expand Down Expand Up @@ -297,7 +298,7 @@ trait Logic { self: PatternMatching =>
def findAllModelsFor(f: Formula): List[Model] def findAllModelsFor(f: Formula): List[Model]
} }


trait CNF extends FirstOrderLogic { trait CNF extends PropositionalLogic {


/** Override Array creation for efficiency (to not go through reflection). */ /** Override Array creation for efficiency (to not go through reflection). */
private implicit val clauseTag: scala.reflect.ClassTag[Clause] = new scala.reflect.ClassTag[Clause] { private implicit val clauseTag: scala.reflect.ClassTag[Clause] = new scala.reflect.ClassTag[Clause] {
Expand Down Expand Up @@ -404,7 +405,6 @@ trait Logic { self: PatternMatching =>
// patmatDebug("cnf for\n"+ p +"\nis:\n"+cnfString(res)) // patmatDebug("cnf for\n"+ p +"\nis:\n"+cnfString(res))
res res
} }

} }


trait DPLLSolver extends CNF { trait DPLLSolver extends CNF {
Expand Down Expand Up @@ -524,4 +524,335 @@ trait Logic { self: PatternMatching =>
satisfiableWithModel satisfiableWithModel
} }
} }

trait TreesAndTypesDomain extends PropositionalLogic with CheckableTreeAndTypeAnalysis {
// resets hash consing -- only supposed to be called by TreeMakersToProps
def prepareNewAnalysis(): Unit = { Var.resetUniques(); Const.resetUniques() }

object Var extends VarExtractor {
private var _nextId = 0
def nextId = {_nextId += 1; _nextId}

def resetUniques() = {_nextId = 0; uniques.clear()}
private val uniques = new mutable.HashMap[Tree, Var]
def apply(x: Tree): Var = uniques getOrElseUpdate(x, new Var(x, x.tpe))
def unapply(v: Var) = Some(v.path)
}
class Var(val path: Tree, staticTp: Type) extends AbsVar {
private[this] val id: Int = Var.nextId

// private[this] var canModify: Option[Array[StackTraceElement]] = None
private[this] def ensureCanModify() = {} //if (canModify.nonEmpty) patmatDebug("BUG!"+ this +" modified after having been observed: "+ canModify.get.mkString("\n"))

private[this] def observed() = {} //canModify = Some(Thread.currentThread.getStackTrace)

// don't access until all potential equalities have been registered using registerEquality
private[this] val symForEqualsTo = new mutable.HashMap[Const, Sym]

// when looking at the domain, we only care about types we can check at run time
val staticTpCheckable: Type = checkableType(staticTp)

private[this] var _mayBeNull = false
def registerNull(): Unit = { ensureCanModify; if (NullTp <:< staticTpCheckable) _mayBeNull = true }
def mayBeNull: Boolean = _mayBeNull

// case None => domain is unknown,
// case Some(List(tps: _*)) => domain is exactly tps
// we enumerate the subtypes of the full type, as that allows us to filter out more types statically,
// once we go to run-time checks (on Const's), convert them to checkable types
// TODO: there seems to be bug for singleton domains (variable does not show up in model)
lazy val domain: Option[Set[Const]] = {
val subConsts = enumerateSubtypes(staticTp).map{ tps =>
tps.toSet[Type].map{ tp =>
val domainC = TypeConst(tp)
registerEquality(domainC)
domainC
}
}

val allConsts =
if (mayBeNull) {
registerEquality(NullConst)
subConsts map (_ + NullConst)
} else
subConsts

observed; allConsts
}

// populate equalitySyms
// don't care about the result, but want only one fresh symbol per distinct constant c
def registerEquality(c: Const): Unit = {ensureCanModify; symForEqualsTo getOrElseUpdate(c, Sym(this, c))}

// return the symbol that represents this variable being equal to the constant `c`, if it exists, otherwise False (for robustness)
// (registerEquality(c) must have been called prior, either when constructing the domain or from outside)
def propForEqualsTo(c: Const): Prop = {observed; symForEqualsTo.getOrElse(c, False)}

// [implementation NOTE: don't access until all potential equalities have been registered using registerEquality]p
/** the information needed to construct the boolean proposition that encods the equality proposition (V = C)
*
* that models a type test pattern `_: C` or constant pattern `C`, where the type test gives rise to a TypeConst C,
* and the constant pattern yields a ValueConst C
*
* for exhaustivity, we really only need implication (e.g., V = 1 implies that V = 1 /\ V = Int, if both tests occur in the match,
* and thus in this variable's equality symbols), but reachability also requires us to model things like V = 1 precluding V = "1"
*/
lazy val implications = {
/** when we know V = C, which other equalities must hold
*
* in general, equality to some type implies equality to its supertypes
* (this multi-valued kind of equality is necessary for unreachability)
* note that we use subtyping as a model for implication between instanceof tests
* i.e., when S <:< T we assume x.isInstanceOf[S] implies x.isInstanceOf[T]
* unfortunately this is not true in general (see e.g. SI-6022)
*/
def implies(lower: Const, upper: Const): Boolean =
// values and null
lower == upper ||
// type implication
(lower != NullConst && !upper.isValue &&
instanceOfTpImplies(if (lower.isValue) lower.wideTp else lower.tp, upper.tp))

// if(r) patmatDebug("implies : "+(lower, lower.tp, upper, upper.tp))
// else patmatDebug("NOT implies: "+(lower, upper))


/** does V = C preclude V having value `other`?
(1) V = null is an exclusive assignment,
(2) V = A and V = B, for A and B value constants, are mutually exclusive unless A == B
we err on the safe side, for example:
- assume `val X = 1; val Y = 1`, then
(2: Int) match { case X => case Y => <falsely considered reachable> }
- V = 1 does not preclude V = Int, or V = Any, it could be said to preclude V = String, but we don't model that
(3) for types we could try to do something fancy, but be conservative and just say no
*/
def excludes(a: Const, b: Const): Boolean =
a != b && ((a == NullConst || b == NullConst) || (a.isValue && b.isValue))

// if(r) patmatDebug("excludes : "+(a, a.tp, b, b.tp))
// else patmatDebug("NOT excludes: "+(a, b))

/*
[ HALF BAKED FANCINESS: //!equalitySyms.exists(common => implies(common.const, a) && implies(common.const, b)))
when type tests are involved, we reason (conservatively) under a closed world assumption,
since we are really only trying to counter the effects of the symbols that we introduce to model type tests
we don't aim to model the whole subtyping hierarchy, simply to encode enough about subtyping to do unreachability properly
consider the following hierarchy:
trait A
trait B
trait C
trait AB extends B with A
// two types are mutually exclusive if there is no equality symbol whose constant implies both
object Test extends App {
def foo(x: Any) = x match {
case _ : C => println("C")
case _ : AB => println("AB")
case _ : (A with B) => println("AB'")
case _ : B => println("B")
case _ : A => println("A")
}
of course this kind of reasoning is not true in general,
but we can safely pretend types are mutually exclusive as long as there are no counter-examples in the match we're analyzing}
*/

val excludedPair = new mutable.HashSet[ExcludedPair]

case class ExcludedPair(a: Const, b: Const) {
override def equals(o: Any) = o match {
case ExcludedPair(aa, bb) => (a == aa && b == bb) || (a == bb && b == aa)
case _ => false
}
// make ExcludedPair(a, b).hashCode == ExcludedPair(b, a).hashCode
override def hashCode = a.hashCode ^ b.hashCode
}

equalitySyms map { sym =>
// if we've already excluded the pair at some point (-A \/ -B), then don't exclude the symmetric one (-B \/ -A)
// (nor the positive implications -B \/ A, or -A \/ B, which would entail the equality axioms falsifying the whole formula)
val todo = equalitySyms filterNot (b => (b.const == sym.const) || excludedPair(ExcludedPair(b.const, sym.const)))
val (excluded, notExcluded) = todo partition (b => excludes(sym.const, b.const))
val implied = notExcluded filter (b => implies(sym.const, b.const))

patmatDebug("eq axioms for: "+ sym.const)
patmatDebug("excluded: "+ excluded)
patmatDebug("implied: "+ implied)

excluded foreach { excludedSym => excludedPair += ExcludedPair(sym.const, excludedSym.const)}

(sym, implied, excluded)
}
}

// accessing after calling registerNull will result in inconsistencies
lazy val domainSyms: Option[Set[Sym]] = domain map { _ map symForEqualsTo }

lazy val symForStaticTp: Option[Sym] = symForEqualsTo.get(TypeConst(staticTpCheckable))

// don't access until all potential equalities have been registered using registerEquality
private lazy val equalitySyms = {observed; symForEqualsTo.values.toList}

// don't call until all equalities have been registered and registerNull has been called (if needed)
def describe = {
def domain_s = domain match {
case Some(d) => d mkString (" ::= ", " | ", "// "+ symForEqualsTo.keys)
case _ => symForEqualsTo.keys mkString (" ::= ", " | ", " | ...")
}
s"$this: ${staticTp}${domain_s} // = $path"
}
override def toString = "V"+ id
}


import global.{ConstantType, Constant, SingletonType, Literal, Ident, singleType}
import global.definitions.{AnyClass, UnitClass}


// all our variables range over types
// a literal constant becomes ConstantType(Constant(v)) when the type allows it (roughly, anyval + string + null)
// equality between variables: SingleType(x) (note that pattern variables cannot relate to each other -- it's always patternVar == nonPatternVar)
object Const {
def resetUniques() = {_nextTypeId = 0; _nextValueId = 0; uniques.clear() ; trees.clear()}

private var _nextTypeId = 0
def nextTypeId = {_nextTypeId += 1; _nextTypeId}

private var _nextValueId = 0
def nextValueId = {_nextValueId += 1; _nextValueId}

private val uniques = new mutable.HashMap[Type, Const]
private[TreesAndTypesDomain] def unique(tp: Type, mkFresh: => Const): Const =
uniques.get(tp).getOrElse(
uniques.find {case (oldTp, oldC) => oldTp =:= tp} match {
case Some((_, c)) =>
patmatDebug("unique const: "+ (tp, c))
c
case _ =>
val fresh = mkFresh
patmatDebug("uniqued const: "+ (tp, fresh))
uniques(tp) = fresh
fresh
})

private val trees = mutable.HashSet.empty[Tree]

// hashconsing trees (modulo value-equality)
private[TreesAndTypesDomain] def uniqueTpForTree(t: Tree): Type =
// a new type for every unstable symbol -- only stable value are uniqued
// technically, an unreachable value may change between cases
// thus, the failure of a case that matches on a mutable value does not exclude the next case succeeding
// (and thuuuuus, the latter case must be considered reachable)
if (!t.symbol.isStable) t.tpe.narrow
else trees find (a => a.correspondsStructure(t)(sameValue)) match {
case Some(orig) =>
patmatDebug("unique tp for tree: "+ (orig, orig.tpe))
orig.tpe
case _ =>
// duplicate, don't mutate old tree (TODO: use a map tree -> type instead?)
val treeWithNarrowedType = t.duplicate setType t.tpe.narrow
patmatDebug("uniqued: "+ (t, t.tpe, treeWithNarrowedType.tpe))
trees += treeWithNarrowedType
treeWithNarrowedType.tpe
}
}

sealed abstract class Const {
def tp: Type
def wideTp: Type

def isAny = wideTp.typeSymbol == AnyClass
def isValue: Boolean //= tp.isStable

// note: use reference equality on Const since they're hash-consed (doing type equality all the time is too expensive)
// the equals inherited from AnyRef does just this
}

// find most precise super-type of tp that is a class
// we skip non-class types (singleton types, abstract types) so that we can
// correctly compute how types relate in terms of the values they rule out
// e.g., when we know some value must be of type T, can it still be of type S? (this is the positive formulation of what `excludes` on Const computes)
// since we're talking values, there must have been a class involved in creating it, so rephrase our types in terms of classes
// (At least conceptually: `true` is an instance of class `Boolean`)
private def widenToClass(tp: Type): Type =
if (tp.typeSymbol.isClass) tp
else tp.baseType(tp.baseClasses.head)

object TypeConst extends TypeConstExtractor {
def apply(tp: Type) = {
if (tp =:= NullTp) NullConst
else if (tp.isInstanceOf[SingletonType]) ValueConst.fromType(tp)
else Const.unique(tp, new TypeConst(tp))
}
def unapply(c: TypeConst): Some[Type] = Some(c.tp)
}

// corresponds to a type test that does not imply any value-equality (well, except for outer checks, which we don't model yet)
sealed class TypeConst(val tp: Type) extends Const {
assert(!(tp =:= NullTp))
/*private[this] val id: Int = */ Const.nextTypeId

val wideTp = widenToClass(tp)
def isValue = false
override def toString = tp.toString //+"#"+ id
}

// p is a unique type or a constant value
object ValueConst extends ValueConstExtractor {
def fromType(tp: Type) = {
assert(tp.isInstanceOf[SingletonType])
val toString = tp match {
case ConstantType(c) => c.escapedStringValue
case _ => tp.toString
}
Const.unique(tp, new ValueConst(tp, tp.widen, toString))
}
def apply(p: Tree) = {
val tp = p.tpe.normalize
if (tp =:= NullTp) NullConst
else {
val wideTp = widenToClass(tp)

val narrowTp =
if (tp.isInstanceOf[SingletonType]) tp
else p match {
case Literal(c) =>
if (c.tpe.typeSymbol == UnitClass) c.tpe
else ConstantType(c)
case Ident(_) if p.symbol.isStable =>
// for Idents, can encode uniqueness of symbol as uniqueness of the corresponding singleton type
// for Selects, which are handled by the next case, the prefix of the select varies independently of the symbol (see pos/virtpatmat_unreach_select.scala)
singleType(tp.prefix, p.symbol)
case _ =>
Const.uniqueTpForTree(p)
}

val toString =
if (hasStableSymbol(p)) p.symbol.name.toString // tp.toString
else p.toString //+"#"+ id

Const.unique(narrowTp, new ValueConst(narrowTp, checkableType(wideTp), toString)) // must make wide type checkable so that it is comparable to types from TypeConst
}
}
}
sealed class ValueConst(val tp: Type, val wideTp: Type, override val toString: String) extends Const {
// patmatDebug("VC"+(tp, wideTp, toString))
assert(!(tp =:= NullTp)) // TODO: assert(!tp.isStable)
/*private[this] val id: Int = */Const.nextValueId
def isValue = true
}


lazy val NullTp = ConstantType(Constant(null))
case object NullConst extends Const {
def tp = NullTp
def wideTp = NullTp

def isValue = true
override def toString = "null"
}
}
} }

0 comments on commit 7fdc873

Please sign in to comment.