Skip to content
Code repo for "DAVANet: Stereo Deblurring with View Aggregation" (CVPR'19, Oral)
Python
Branch: master
Clone or download
Latest commit 72ce21d Jul 8, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
ckpt Create code repo for DAVANet. May 4, 2019
core Fix a bug. Jul 8, 2019
datasets Create code repo for DAVANet. May 4, 2019
losses Create code repo for DAVANet. May 4, 2019
models Create code repo for DAVANet. May 4, 2019
utils Fix some bugs May 17, 2019
.gitignore Remove .idea. Jun 17, 2019
LICENSE Create code repo for DAVANet. May 4, 2019
README.md Update README.md May 17, 2019
config.py Create code repo for DAVANet. May 4, 2019
requirements.txt Create code repo for DAVANet. May 4, 2019
runner.py Fix some bugs May 17, 2019

README.md

DAVANet

Code repo for the paper "DAVANet: Stereo Deblurring with View Aggregation" (CVPR'19, Oral).  [arXiv]   [Project Page] 

Stereo Blur Dataset

Download the dataset (192.5GB, unzipped 202.2GB) from [Data Website].

Pretrained Models

You could download the pretrained model (34.8MB) of DAVANet from [Here].

Prerequisites

  • Linux (tested on Ubuntu 14.04/16.04)
  • Python 2.7+
  • Pytorch 0.4.1
  • easydict
  • tensorboardX
  • pyexr

Installation

pip install -r requirements.txt

Get Started

Use the following command to train the neural network:

python runner.py 
        --phase 'train'\
        --data [dataset path]\
        --out [output path]

Use the following command to test the neural network:

python runner.py \
        --phase 'test'\
        --weights './ckpt/best-ckpt.pth.tar'\
        --data [dataset path]\
        --out [output path]

Use the following command to resume training the neural network:

python runner.py 
        --phase 'resume'\
        --weights './ckpt/best-ckpt.pth.tar'\
        --data [dataset path]\
        --out [output path]

You can also use the following simple command, with changing the settings in config.py:

python runner.py

Results on the testing dataset

Citation

If you find DAVANet, or Stereo Blur Dataset useful in your research, please consider citing:

@inproceedings{Zhou2019Stereodeblur,
  title={DAVANet: Stereo Deblurring with View Aggregation},
  author={Zhou, Shangchen and Zhang, Jiawei and Zuo, Wangmeng and Xie, Haozhe and Pan, Jinshan and Ren, Jimmy},
  booktitle={CVPR},
  year={2019}
}

Contact

We are glad to hear if you have any suggestions and questions.

Please send email to shangchenzhou@gmail.com

Reference

[1] Zhe Hu, Li Xu, and Ming-Hsuan Yang. Joint depth estimation and camera shake removal from single blurry image. In CVPR, 2014.

[2] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. In CVPR, 2017.

[3] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri Matas. Deblurgan: Blind motion deblurring using conditional adversarial networks. In CVPR, 2018.

[4] Jiawei Zhang, Jinshan Pan, Jimmy Ren, Yibing Song, Lin- chao Bao, Rynson WH Lau, and Ming-Hsuan Yang. Dynamic scene deblurring using spatially variant recurrent neural networks. In CVPR, 2018.

[5] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Jiaya Jia. Scale-recurrent network for deep image deblurring. In CVPR, 2018.

License

This project is open sourced under MIT license.

You can’t perform that action at this time.