Skip to content

Commit

Permalink
Deploy
Browse files Browse the repository at this point in the history
  • Loading branch information
semapheur committed Jun 1, 2024
1 parent f7e11cc commit a0512e7
Showing 1 changed file with 205 additions and 1 deletion.
206 changes: 205 additions & 1 deletion content/notes/math/differential_geometry.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -1256,7 +1256,7 @@ $$
The Riemannian connection on a smooth, not necessarily orientable surface $M$ in $\R^3$ is given by $\nabla_X Y = \operatorname{pr}(\mathrm{D}_X Y)$.
</MathBox>

## Gauss's Theorema Egregium
## Gauss's Theorema Egregium for $\R^3$

Suppose $M$ is a regular submanifold of $\R^n$. For $X$ a tangent vector field on $M$ and $Z$ a vector field along $M$ in $\R^n$, the directional derivative $\mathrm{D}_X Z$ is a vector field along $M$ in $\R^n$. Since the Riemannian connection $\nabla$ of a surface $M$ in $\R^3$ is defined in terms of the directional derivative $\mathrm{D}$ on $M$, it is easy to compare the curvature tensors of $\nabla$ and $\mathrm{D}$. This will lead to a formula for the curvature $R$ of $\nabla$, called the *Gauss curvature equation*.

Expand Down Expand Up @@ -1468,6 +1468,210 @@ $$

## Generalizations to hypersurfaces in $\R^{n+1}$

### The shape operator of a hypersurface

A *hypersurface* $M$ in $\R^{n+1}$ is a submanifold of codimension $1$. Assume there is a smooth unit normal vector field $N$ on $M$; note that this is always possible locally on any hypersurface. Recall that the directional derivative $\mathrm{D}$ on $\R^{n+1}$ is the Riemannian connection of $\R^{n+1}$.

For any point $\mathbf{p}\in M$ and tangent vector $X_\mathbf{p}\in T_\mathbf{p}M$, since $\langle N,N\rangle\equiv 1$

$$
0 = X_\mathbf{p}\langle N,N\rangle = 2\langle\mathrm{D}_{X_\mathbf{p} N, N}\rangle
$$

Therefore, $\mathrm{D}_{X_\mathbf{p}}N$ is tangent to $M$. The *shape operator* $L_\mathbf{p}: T_\mathbf{p}M \to T_\mathbf{p}M$ is defined to be

$$
L_\mathbf{p}(X_\mathbf{p}) = -\mathrm{D}_{X_\mathbf{p}}N,\; X_\mathbf{p}\in T_\mathbf{p}M
$$

As the point $\mathbf{p}$ varies over $M$, the shape operator globalizes to an $\mathcal{F}$-linear map $L:\mathfrak{X}(M)\to\mathfrak{X}(M)$ given by $L(X)_\mathbf{p} = L_\mathbf{p}(X_\mathbf{p})$.

<MathBox title='Properties of the shape operator on hypersurfaces in $\R^{n+1}$' boxType='definition'>
Let $X,Y\in\mathfrak{X}(M)$ be smooth vector fields on an oriented hypersurface $M$ in $\R^{n+1}$. Then
1. $\langle L(X), Y\rangle = \langle\mathrm{D}_X Y, N\rangle$
2. the shape operator is self-adjoint with respect to the Euclidean metric inherited from $\R^{n+1}$
$$
\langle L(X),Y\rangle = \langle X,L(Y)\rangle
$$

<details>
<summary>Proof</summary>

Since $\langle Y, N\rangle = 0$, by the compatibility of $\mathrm{D}$ with the metric

$$
0 = X\langle Y,N\rangle = \langle \mathrm{D}_X Y, N\rangle + \langle Y, \mathrm{D}_X N\rangle
$$

Hence

$$
\langle \mathrm{D}_X Y, N\rangle = \langle Y, -\mathrm{D}_X N\rangle = \langle Y, L(X)\rangle
$$

Reversing the roles of $X$ and $Y$ gives

$$
\langle \mathrm{D}_Y X, N\rangle = \langle X, L(Y)\rangle
$$

Since $[X,Y]$ is tangent to $M$

$$
\langle [X,Y], N\rangle = 0
$$

By torsion-freeness, subtracting $\langle D_Y X, N\rangle$ and $\langle [X,Y], N\rangle$ from $\langle \mathrm{D}_X Y, N\rangle$ gives

$$
\begin{align*}
0 =& \langle \mathrm{D}_X Y - \mathrm{D}_Y X - [X,Y], N\rangle \\
=& \langle Y, L(X)\rangle - \langle X,L(Y)\rangle
\end{align*}
$$
</details>
</MathBox>

<MathBox title='Principal, mean and Gaussian curvature of hypersurfaces in $\R^{n+1}$' boxType='definition'>
Let $M$ be a hypersurface in $\R^{n+1}$ and $L_\mathbf{p}: T_\mathbf{p}M \to T_\mathbf{p} M$ be the shape operator at a point $\mathbf{p}\in M$. The following curvature measures can be defined on $M$ at $\mathbf{p}$:
1. The *principal curvatures* are the eigenvalues $\lambda_i$ of $L_\mathbf{p}$.
2. The *mean curvature* is the average of the principal curvatures, or the trace of $L_\mathbf{p}$
$$
H(\mathbf{p}) = \frac{1}{n}\sum_{i=1}^n \lambda_i = \frac{1}{n}\operatorname{tr}(L_\mathbf{p})
$$
3. The *Gaussian curvature* is the product of the principal curvatures, or the determinant of $L_\mathbf{p}$
$$
K(\mathbf{p}) = \prod_{i=1}^n \lambda_i = \det(L_\mathbf{p})
$$
</MathBox>

### The Levi-Civita connection on a hypersurface

<MathBox title='' boxType='theorem'>
Let $M$ be a hypersurface in $\R^{n+1}$ and $\mathrm{D}$ the directional derivative on $\R^{n+1}$. For $X,Y\in\mathfrak{X}(M)$ the tangential component of $\mathrm{D}_X Y$ defines the Riemannian connection $\nabla$ of $M$

<details>
<summary>Proof</summary>

Since it is evident that $\nabla$ satisfies the two defining properties of a connection it suffices to check that $\nabla_X Y$ is torsion free and compatible with the metric.

**Torsion-freeness:** Let $T_\mathrm{D}$ and $T_\nabla$ be the torsions of $\mathrm{D}$ and $\nabla$, respectively. By definition, for $X,Y\in\mathfrak{X}(M)$

$$
\begin{align*}
\mathrm{D}_X Y =& \nabla_X Y + (\mathrm{D}_X Y)_{\mathrm{nor}} \\
\mathrm{D}_Y X =& \nabla_Y X + (\mathrm{D}_Y X)_{\mathrm{nor}}
\end{align*}
$$

Since $\mathrm{D}$ is torsion-free, $\mathrm{D}_X Y - \mathrm{D}_Y X = [X,Y]$. Equating the normal components of both sides, we get $(\mathrm{D}_X Y)_\mathrm{nor} - (\mathrm{D}_Y X)_\mathrm{nor} = 0$. Thus,

$$
\begin{align*}
0 =& T_\mathrm{D}(X,Y) \\
=& \mathrm{D}_X Y - \mathrm{D}_Y X - [X,Y] \\
=& (\nabla_X Y - \nabla_Y X - [X,Y]) + (\mathrm{D}_X Y)_\mathrm{nor} - (\mathrm{D}_Y X)_\mathrm{nor} \\
=& \nabla_X Y - \nabla_Y X - [X,Y] = T_\nabla (X,Y)
\end{align*}
$$

**Compatibility with the metric:** For $X,Y,Z\in\mathfrak{X}(M)$

$$
\begin{align*}
X\langle Y, Z\rangle =& \langle\mathrm{D}_X Y, Z\rangle + \langle Y, \mathrm{D}_X Z\rangle \\
=& \langle\nabla_X Y + (\mathrm{D}_X Y)_\mathrm{nor} Z \rangle + \langle Y, \nabla_X Z + (\nabla_X Y)_\mathrm{nor}\rangle \\
=& \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle
\end{align*}
$$
</details>
</MathBox>

### Fundamental forms

At each point $\mathbf{p}$ of an oriented hypersurface $M\subseteq\R^{n+1}$, there is a sequence of symmetric bilinear maps on $T_\mathbf{p}M$ called the *first*, *second* and *third fundamental forms* and so on

$$
\begin{align*}
\matrm{I}(X_\mathbf{p},Y_\mathbf{p}) =& \langle X_\mathbf{p}, Y_\mathbf{p}\rangle \\
\mathrm{II}(X_\mathbf{p},Y_\mathbf{p}) =& \langle L(X_\mathbf{p}), Y_\mathbf{p}\rangle = \langle X_\mathbf{p}, L(Y_\mathbf{p})\rangle \\
\mathrm{III}(X_\mathbf{p},Y_\mathbf{p}) =& \langle L^2 (X_\mathbf{p}), Y_\mathbf{p}\rangle = \langle L(X_\mathbf{p}),L(Y_\mathbf{p})\rangle = \langle X_\mathbf{p}, L^2 (Y_\mathbf{p})\rangle, \dots
\end{align*}
$$

For $X,Y\in\mathfrak{X}(M)$, the directional derivative $\mathrm{D}_X Y$ decomposes into the sum of a tangential and normal component. The tangential component is the Levi-Civita connection on $M$; the normal component is essentially the second fundamental form.

<MathBox title='' boxType='theorem'>
If $N$ is a smooth unit normal vector field on the hypersurface $M$ in $\R^{n+1}$ and $X,Y\in\mathfrak{X}(M)$ are smooth vector fields on $M$, then

$$
(\mathrm{D}_X Y)_\mathrm{nor} = \mathrm{II}(X,Y)N
$$

<details>
<summary>Proof</summary>

The normal component $(\mathrm{D}_X Y)_\mathrm{nor}$ is a multiple of $N$, so

$$
\mathrm{D}_X Y =& (\mathrm{D}_X Y)_\mathrm{tan} + (\mathrm{D}_X Y)_\mathrm{nor} \\
=& lambda_X Y + \lambda N
$$

for some $\lambda\in\R$. Taking the inner product of both sides with $N$ gives

$$
\langle \mathrm{D}_X,N\rangle = \lambda\langle N,N\rangle = \lambda
$$

Hence

$$
\begin{align*}
(\mathrm{D}_X Y)_\mathrm{nor} =& \langle\mathrm{D}_X Y,N\rangle N \\
=& \langle L(X), Y\rangle N \\
=& \mathrm{II}(X,Y)N
\end{align*}
$$
</details>
</MathBox>

### The Gauss curvature and Codazzi-Mainardi equations

Let $M$ be an oriented, smooth hypersurface in $\R^{n+1}$, with a smooth unit normal vector field $N$. The relation between the Levi-Civita connection $\mathrm{D}$ on $\R^{n+1}$ and the Levi-Civita connection on $M$ implies a relation between the curvature $R_\mathrm{D}(X,Y)Z = 0$ on $\R^{n+1}$ and the curvature $R(X,Y)Z$ on $M$. The tangential component of this relation gives the Gauss curvature equation

$$
R(X,Y) = \langle L(Y), Z\rangle L(X) - \langle L(X), Z\rangle L(Y)
$$

and the normal component gives the Codazzi-Mainardi equation

$$
\nabla_X L(Y) - \nabla_Y L(X) - L([X,Y]) = 0
$$

<MathBox title='' boxType='corollary'>
If $M$ is a smooth oriented hypersurface in $\R^{n+1}$ with curvature $R$ and $X,Y\in\mathfrak{X}(M)$, then

$$
\langle R(X,Y)Y, X\rangle = \mathrm{II}(X,X)\mathrm{II}(Y,Y) - \mathrm{II}(X,Y)^2
$$

<details>
<summary>Proof</summary>

By the Gauss curvature equation

$$
\begin{align*}
\langle R(X,Y)Y, X\rangle =& \langle L(Y), Y\rangle \langle L(X),X\rangle - \langle L(X), Y\rangle\langle L(Y),X\rangle \\
=& \mathrm{II}(X,X)\mathrm{II}(Y,Y) - \mathrm{II}(X,Y)^2
\end{align*}
$$
</details>
</MathBox>


# Curvature and differential forms

# Geodesics
Expand Down

0 comments on commit a0512e7

Please sign in to comment.