Skip to content
A basic implementation of a Kohonen map in JavaScript
TypeScript JavaScript
Branch: master
Clone or download
Latest commit 37d5c39 Jan 4, 2020
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.vscode
pdfs
src fix mapping Oct 22, 2019
.gitignore add quantization and topographic error Feb 15, 2019
.npmignore add quantization and topographic error Feb 15, 2019
.travis.yml
LICENSE Initial commit Feb 11, 2016
README.md
jest.config.js
package.json 3.0.2 Oct 22, 2019
tsconfig.json add quantization and topographic error Feb 15, 2019
yarn.lock

README.md

kohonen Build Status

A basic implementation of a Kohonen map in JavaScript

Disclaimer: this is a toy implementation of the SOM algorithm, you should probably consider using a more solid library in R or Python.

Usage

Import lib

npm i d3-array d3-scale d3-random lodash ml-pca @seracio/kohonen --save

Then, in your JS script :

import { Kohonen, generateGrid } from '@seracio/kohonen';

API

Kohonen

The Kohonen class is the main class.

Constructor
param name definition type mandatory default
neurons grid of neurons Array yes
data dataset Array of Array yes
maxStep step max to clamp Number no 1000
maxLearningCoef Number no .4
minLearningCoef Number no .1
maxNeighborhood Number no 1
minNeighborhood Number no .3
// instanciate your Kohonen map
const k = new Kohonen({ data, neurons });

// you can use the grid helper to generate a grid with 10x10 hexagons
const k = new Kohonen({ data, neurons: generateGrid(10, 10) });

neurons parameter should be a flat array of { pos: [x,y] }. pos array being the coordinate on the grid.

data parameter is an array of the vectors you want to display. There is no need to standardize your data, that will be done internally by scaling each feature to the [0,1] range.

Basically the constructor do :

  • standardize the given data set
  • initialize random weights for neurons using PCA's largests eigenvectors
training method
param name definition type mandatory default
log func called after each step of learning process Function no (neurons, step)=>{}
k.training();

training method iterates on random vectors picked on normalized data. If a log function is provided as a parameter, it will receive instance neurons and step as params.

mapping method

mapping method returns grid position for each data provided on the constructor.

const myPositions = k.mapping();
umatrix method

umatrix method returns the U-Matrix of the grid (currently only with standardized vectors).

const umatrix = k.umatrix();
errors

There are some heavy calculations in those 2 methods ; if you use them in the training callback (log), it's better not to use it on every step.

k.topographicError();
k.quantizationError();

k.training((neurons, step) => {
    if (step % 20 === 0) {
        k.topographicError();
        k.quantizationError();
    }
});

Example

We've developed a full example on a dedicated repository

capture

(Re)sources

You can’t perform that action at this time.