Skip to content

silky/liquidhaskell

 
 

Repository files navigation

LiquidHaskell Build Status

Requirements

LiquidHaskell requires (in addition to the cabal dependencies)

  • SMTLIB2 compatible solver

How To Clone, Build and Install

To begin building, run the following commands in the root directory of the distribution:

  1. Install a suitable smt solver binary, e.g.

    IMPORTANT: if you're on Windows, please make sure the solver is installed in the same directory as LiquidHaskell itself (i.e. whereever cabal puts your binaries).

  2. Create top-level project directory and clone repositories:

    mkdir /path/to/liquid
    cd /path/to/liquid
    git clone git@github.com:ucsd-progsys/liquid-fixpoint.git
    git clone git@github.com:ucsd-progsys/liquidhaskell.git
    cd liquidhaskell
    cabal sandbox init
    cabal sandbox add-source ../liquid-fixpoint/
    
  3. Install

    cabal install
    

To rebuild after this step, run

`make` or `cabal install`

inside

/path/to/liquid/liquidhaskell/

How To Run

To verify a file called foo.hs at type

$ liquid foo.hs

How To Run Regression Tests

$ make test

To use threads to speed up the tests

$ make THREADS=30 test

Or your favorite number of threads, depending on cores etc.

You can directly extend and run the tests by modifying

tests/test.hs

To run the regression test and the benchmarks run

 $ make all-test

How to Profile

  1. Build with profiling on

    $ make pdeps && make prof

  2. Run with profiling

    $ time liquid range.hs +RTS -hc -p

    $ time liquid range.hs +RTS -hy -p

    Followed by this which shows the stats file

    $ more liquid.prof

    or by this to see the graph

    $ hp2ps -e8in -c liquid.hp

    $ gv liquid.ps

    etc.

How to Get Stack Traces On Exceptions

  1. Build with profiling on

    $ make pdeps && make prof

  2. Run with backtraces

    $ liquid +RTS -xc -RTS foo.hs

Command Line Options

LiquidHaskell supports several command line options, to configure the checking. Each option can be passed in at the command line, or directly added to the source file via:

{-@ LIQUID "option-within-quotes" @-}

for example, to disable termination checking (see below)

{-@ LIQUID "--notermination" @-}

You may also put command line options in the environment variable LIQUIDHASKELL_OPTS. For example, if you add the line:

LIQUIDHASKELL_OPTS="--diff"

to your .bashrc then, by default, all files will be incrementally checked unless you run with the overriding --full flag (see below).

Incremental Checking

LiquidHaskell supports incremental checking where each run only checks the part of the program that has been modified since the previous run.

$ liquid --diff foo.hs

Each run of liquid saves the file to a .bak file and the subsequent run + does a diff to see what has changed w.r.t. the .bak file + only generates constraints for the [CoreBind] corresponding to the changed top-level binders and their transitive dependencies.

The time savings are quite significant. For example:

$ time liquid --notermination -i . Data/ByteString.hs > log 2>&1

real	7m3.179s
user	4m18.628s
sys	    0m21.549s

Now if you go and tweak the definition of spanEnd on line 1192 and re-run:

$ time liquid -d --notermination -i . Data/ByteString.hs > log 2>&1

real	0m11.584s
user	0m6.008s
sys	    0m0.696s

The diff is only performed against code, i.e. if you only change specifications, qualifiers, measures, etc. liquid -d will not perform any checks. In this case, you may specify individual definitions to verify:

$ liquid -b bar -b baz foo.hs

This will verify bar and baz, as well as any functions they use.

If you always want to run a given file with diff-checking, add the pragma:

{-@ LIQUID "--diff" @-}

Full Checking (DEFAULT)

To force LiquidHaskell to check the whole file (DEFAULT), use:

$ liquid --full foo.hs

to the file. This will override any other --diff incantation elsewhere (e.g. inside the file.)

If you always want to run a given file with full-checking, add the pragma:

{-@ LIQUID "--full" @-}

Specifying Different SMT Solvers

By default, LiquidHaskell uses the SMTLIB2 interface for Z3.

To run a different solver (supporting SMTLIB2) do:

$ liquid --smtsolver=NAME foo.hs

Currently, LiquidHaskell supports

To use these solvers, you must install the corresponding binaries from the above web-pages into your PATH.

You can also build and link against the Z3 API (faster but requires more dependencies). If you do so, you can use that interface with:

$ liquid --smtsolver=z3mem foo.hs

Short Error Messages

By default, subtyping error messages will contain the inferred type, the expected type -- which is not a super-type, hence the error -- and a context containing relevant variables and their type to help you understand the error. If you don't want the above and instead, want only the source position of the error use:

--short-errors

Short (Unqualified) Module Names

By default, the inferred types will have fully qualified module names. To use unqualified names, much easier to read, use:

--short-names

Totality Check

LiquidHaskell can prove the absence of pattern match failures. Use the totality flag to prove that all defined functions are total.

liquid --totality test.hs

For example, the definition

 fromJust :: Maybe a -> a
 fromJust (Just a) = a

is not total and it will create an error message. If we exclude Nothing from its domain, for example using the following specification

 {-@ fromJust :: {v:Maybe a | (isJust v)} -> a @-}

fromJust will be safe.

Termination Check

By default a termination check is performed on all recursive functions.

Use the no-termination option to disable the check

liquid --no-termination test.hs

In recursive functions the first algebraic or integer argument should be decreasing.

The default decreasing measure for lists is length and Integers its value.

The user can specify the decreasing measure in data definitions:

{-@ data L [llen] a = Nil | Cons (x::a) (xs:: L a) @-}

Defines that llen is the decreasing measure (to be defined by the user).

For example, in the function foldl

foldl k acc N           = acc
foldl k acc (Cons x xs) = foldl k (x `k` acc) xs 

by default the second argument (the first non-function argument) will be checked to be decreasing. However, the explicit hint

{-@ Decrease foo 3 @-}

tells LiquidHaskell to instead use the third argument.

To disable termination checking for foo that is, to assume that it is terminating (possibly for some complicated reason currently beyond the scope of LiquidHaskell) you can write

{-@ Lazy foo @-}

Some functions do not decrease on a single argument, but rather a combination of arguments, e.g. the Ackermann function.

ack m n
  | m == 0          = n + 1
  | m > 0 && n == 0 = ack (m-1) 1
  | m > 0 && n >  0 = ack (m-1) (ack m (n-1))

In all but one recursive call m decreases, in the final call m does not decrease but n does. We can capture this notion of "x normally decreases, but if it does not, y will" with an extended annotation

{-@ Decrease ack 1 2 @-}

An alternative way to express this specification is by annotating the function's type with the appropriate numeric decreasing expressions. As an example, you can give ack a type

{-@ ack :: m:Nat -> n:Nat -> Nat / [m,n] @-}

stating that the numeric expressions [m, n] are lexicographically decreasing.

Decreasing expressions can be arbitrary refinement expressions, e.g.,

{-@ merge :: Ord a => xs:[a] -> ys:[a] -> [a] / [(len xs) + (len ys)] @-}

states that at each recursive call of merge the sum of the lengths of its arguments will be decreased.

When dealing with mutually recursive functions you may run into a situation where the decreasing parameter must be measured across a series of invocations, e.g.

even 0 = True
even n = odd (n-1)

odd  n = not $ even n

In this case, you can introduce a ghost parameter that orders the functions

even 0 _ = True
even n _ = odd (n-1) 1

odd  n _ = not $ even n 0

thus recovering a decreasing measure for the pair of functions, the pair of arguments. This can be encoded with the lexicographic termination annotation {-@ Decrease even 1 2 @-} (see tests/pos/mutrec.hs for the full example).

Lazy Variables

A variable cab be specified as LAZYVAR

{-@ LAZYVAR z @-}

With this annotation the definition of z will be checked at the points where it is used. For example, with the above annotation the following code is SAFE:

foo = if x > 0 then z else x
  where z = 42 `safeDiv` x
        x = choose 0

By default, all the variables starting with fail are marked as LAZY, to defer failing checks at the point where these variables are used.

Prune Unsorted Predicates

By default unsorted predicates are pruned away (yielding true for the corresponding refinement.) To disable this behaviour use the no-prune-unsorted flag.

liquid --no-prune-unsorted test.hs

Ignore False Predicates

[PLEASE EDIT: I have no idea what "ignoring false predicates means"]

To ignore false predicates use the nofalse option

liquid --nofalse test.hs

See tests/neg/lazy.lhs

Writing Specifications

Modules WITHOUT code

For a module Foo.Bar.Baz the spec file is

include/Foo/Bar/Baz.spec

See, for example, the contents of

include/Prelude.spec
include/Data/List.spec
include/Data/Vector.spec

Modules WITH code: Data

Write the specification directly into the .hs or .lhs file, above the data definition. See, for example, tests/pos/Map.hs

{-@
data Map k a <l :: k -> k -> Bool, r :: k -> k -> Bool>
  = Tip 
  | Bin (sz    :: Size) 
        (key   :: k) 
        (value :: a) 
        (left  :: Map <l, r> (k <l key>) a) 
        (right :: Map <l, r> (k <r key>) a) 
@-}
data Map k a = Tip
             | Bin Size k a (Map k a) (Map k a)

You can also write invariants for data type definitions together with the types. For example see (tests/pos/record0.hs)

{-@ data LL a = BXYZ { size  :: {v: Int | v > 0 }
                     , elems :: {v: [a] | (len v) = size }
                     }
@-}

Finally you can specify the variance of type variables for data types. For example see, where data type Foo has four type variables a, b, c, d, specified as invariant, bivariant, covariant and contravariant, respectively.

data Foo a b c d {-@ data variance Foo invariant bivariant covariant contravariant @-}

Modules WITH code: Functions

Write the specification directly into the .hs or .lhs file, above the function definition. For example (tests/pos/spec0.hs)

{-@ incr :: x:{v: Int | v > 0} -> {v: Int | v > x} @-}
incr   :: Int -> Int
incr x = x + 1

Modules WITH code: Type Classes

Write the specification directly into the .hs or .lhs file, above the type class definition. For example (tests/pos/Class.hs)

{-@ class Sized s where
      size :: forall a. x:s a -> {v:Int | v = (size x)}
@-}
class Sized s where
  size :: s a -> Int

Any measures used in the refined class definition will need to be generic (see Specifying Measures).

Refinement Type Aliases

Predicate Aliases

Often, the propositions in the refinements can get rather long and verbose. You can write predicate aliases like so:

{-@ predicate Lt X Y = X < Y        @-}
{-@ predicate Ge X Y = not (Lt X Y) @-}

and then use the aliases inside refinements, for example

{-@ incr :: x:{v:Int | (Pos v)} -> { v:Int | ((Pos v) && (Ge v x))} @-}
incr :: Int -> Int
incr x = x + 1

See Data.Map for a more substantial and compelling example.

Syntax: The key requirements for type aliases are:

  • Value parameters are specified in uppercase: X, Y, Z etc.

Type Aliases

Similarly, it is often quite tedious to keep writing

{v: Int | v > 0}

Thus, LiquidHaskell supports refinement-type aliases of the form:

{-@ type Gt      N = {v: Int | N <  v} @-}
{-@ type GeNum a N = {v: a   | N <= v} @-}

or

{-@ type SortedList a = [a]<{\fld v -> (v >= fld)}> @-}

or

{-@ type OMap k a = Map <{\root v -> v < root}, {\root v -> v > root}> k a @-}

or

{-@ type MinSPair a = (a, OSplay a) <\fld -> {v : Splay {v:a|v>fld} | 0=0}> @-}

and then use the above in signatures like:

{-@ incr: x: Int -> GeNum Int x @-}

or

{-@ incr: x: Int -> Gt x @-}

and:

{-@ assert insert :: (Ord a) => a -> SortedList a -> SortedList a @-}

[see](tests/pos/ListSort.hs)

and:

{-@ assert insert :: (Ord k) => k -> a -> OMap k a -> OMap k a @-}

[see](tests/pos/Map.hs)

Syntax: The key requirements for type aliases are:

  1. Type parameters are specified in lowercase: a, b, c etc.
  2. Value parameters are specified in uppercase: X, Y, Z etc.

Specifying Measures

Can be placed in .spec file or in .hs/.lhs file wrapped around {-@ @-}

Value measures (include/GHC/Base.spec)

measure len :: forall a. [a] -> GHC.Types.Int
len ([])     = 0
len (y:ys)   = 1 + len(ys)

Propositional measures (tests/pos/LambdaEval.hs)

{-@
measure isValue      :: Expr -> Bool
isValue (Const i)    = true 
isValue (Lam x e)    = true 
isValue (Var x)      = false
isValue (App e1 e2)  = false
isValue (Plus e1 e2) = false 
isValue (Fst e)      = false
isValue (Snd e)      = false
isValue (Pair e1 e2) = ((? (isValue(e1))) && (? (isValue(e2))))
@-}

Raw measures (tests/pos/meas8.hs)

{-@ measure rlen :: [a] -> Int 
rlen ([])   = {v | v = 0}
rlen (y:ys) = {v | v = (1 + rlen(ys))}
@-}

Generic measures (tests/pos/Class.hs)

{-@ class measure size :: a -> Int @-}
{-@ instance measure size :: [a] -> Int
    size ([])   = 0
    size (x:xs) = 1 + (size xs)
@-}
{-@ instance measure size :: Tree a -> Int
    size (Leaf)       = 0
    size (Node x l r) = 1 + (size l) + (size r)
@-}

Haskell Functions as Measures (beta) (tests/pos/HaskellMeasure.hs)

Inductive Haskell Functions from Data Types to some type can be lifted to logic {-@ measure llen @-}

llen        :: [a] -> Int
llen []     = 0
llen (x:xs) = 1 + llen xs

Self-Invariants

Sometimes, we require specifications that allow inner components of a type to refer to the outer components, typically, to measure-based properties of outer components. For example, the following invariant about Maybe values

{-@ type IMaybe a = {v0 : Maybe {v : a | ((isJust v0) && v = (fromJust v0))} | 0 = 0 } @-}

states that the inner a enjoys the property that the outer container is definitely a Just and furthermore, the inner value is exactly the same as the fromJust property of the outer container.

As another example, suppose we have a measure:

measure listElts :: [a] -> (Set a) 
listElts([])   = {v | (? Set_emp(v))}
listElts(x:xs) = {v | v = Set_cup(Set_sng(x), listElts(xs)) }

Now, all lists enjoy the property

{-@ type IList a = {v0 : List  {v : a | (Set_mem v (listElts v0)) } | true } @-}

which simply states that each inner element is indeed, a member of the set of the elements belonging to the entire list.

One often needs these circular or self invariants to connect different levels (or rather, to reify the connections between the two levels.) See this test for a simple example and hedgeUnion and Data.Map.Base for a complex one.

Invariants

There are two ways of specifying invariants in LiquidHaskell. First, there are global invariants that always hold for a data-type. For example, the length of a list cannot be negative

{-@ invariant {v:[a] | (len v >= 0)} @-}

LiquidHaskell can prove that this invariant holds, by proving that all List's constractos (ie., : and []) satisfy it.(TODO!) Then, LiquidHaskell assumes that each list element that is created satisfies this invariant.

Second, there are local invariants that one may use. For example, in test/pos/StreamInvariants.hs every list is treated as a Stream. To establish this local invariant one can use the using declaration

{-@ using ([a]) as  {v:[a] | (len v > 0)} @-}

denoting that each list is not empty. Then, LiquidHaskell will prove that this invariant holds, by proving that all calls to List's constractos (ie., : and []) satisfy it, and will assume that each list element that is created satisfies this invariant.

With this, at the above test LiquidHaskell proves that taking the head of a list is safe. But, at test/neg/StreamInvariants.hs the usage of [] falsifies this local invariant resulting in an "Invariant Check" error.

Formal Grammar of Refinement Predicates

(C)onstants

c := 0, 1, 2, ...

(V)ariables

v := x, y, z, ...

(E)xpressions

e := v                      -- variable
   | c                      -- constant
   | (e + e)                -- addition
   | (e - e)                -- subtraction
   | (c * e)                -- cmultiplication by constant
   | (v e1 e2 ... en)       -- uninterpreted function application
   | (if p then e else e)   -- if-then-else

(R)elations

r := ==               -- equality
   | /=               -- disequality
   | >=               -- greater than or equal
   | <=               -- less than or equal
   | >                -- greater than
   | <                -- less than

(P)redicates

p := (e r e)          -- binary relation
   | (v e1 e2 ... en) -- predicate (or alias) application
   | (p && p)         -- and
   | (p || p)         -- or
   | (p => p)         -- implies
   | (not p)          -- negation
   | true
   | false

Specifying Qualifiers

There are several ways to specify qualifiers.

By Separate .hquals Files

You can write qualifier files e.g. Prelude.hquals

If a module is called or imports

Foo.Bar.Baz

Then the system automatically searches for

include/Foo/Bar/Baz.hquals

By Including .hquals Files

Additional qualifiers may be used by adding lines of the form:

{-@ include <path/to/file.hquals> @-}

to the Haskell source. See, this for example.

In Haskell Source or Spec Files

Finally, you can specifiers directly inside source (.hs or .lhs) or spec (.spec) files by writing as shown here

{-@ qualif Foo(v:Int, a: Int) : (v = a + 100)   @-}

Note In addition to these, LiquidHaskell scrapes qualifiers from all the specifications you write i.e.

  1. all imported type signatures,
  2. measure bodies and,
  3. data constructor definitions.

Generating HTML Output

The system produces HTML files with colorized source, and mouseover inferred type annotations, which are quite handy for debugging failed verification attempts.

  • Regular Haskell When you run: liquid foo.hs you get a file foo.hs.html with the annotations. The coloring is done using hscolour.

  • Markdown + Literate Haskell You can also feed in literate haskell files where the comments are in Pandoc markdown. In this case, the tool will run pandoc to generate the HTML from the comments. Of course, this requires that you have pandoc installed as a binary on your system. If not, hscolour is used to render the HTML.

    It is also possible to generate slide shows from the above. See the tutorial directory for an example.

Editor Integration

Emacs

LH has flycheck integration with emacs.

Install

  1. Add (load "~/.cabal/share/<platform>-ghc-7.8.3/liquidhaskell-0.2.1.0/syntax/flycheck-liquid.el) to your .emacs. <platform> is the string cabal uses to identify your platform, it will look something like x86_64-osx or i386-linux.
  2. Ensure that the checker haskell-liquid is in the chain of flycheck checkers used in haskell-mode.

Disable

To disable flycheck-liquid on a particular file, add:

-- Local Variables:
-- flycheck-disabled-checkers: (haskell-liquid)
-- End:

at the end of the file.

Vim

Install

  1. Add the following to your .vimrc
Bundle 'scrooloose/syntastic'
Bundle 'panagosg7/vim-annotations'
let g:vim_annotations_offset = '/.liquid/'
  1. Copy the following files
cp syntax/haskell.vim ~/.vimrc/syntax/haskell.vim
cp syntax/liquid.vim  ~/.vimrc/bundle/syntastic/syntax_checkers/haskell/liquid.vim

Run

  • :SyntasticCheck liquid runs liquidhaskell on the current buffer.

View

  1. Warnings will be displayed in the usual error buffer.

  2. Inferred Types will be displayed when <F1> is pressed over an identifier.

Options

You can configure the checker in various ways in your .vimrc.

  • To run after each save, for all Haskell files, add:
let g:syntastic_mode_map = { 'mode': 'active' }
let g:syntastic_haskell_checkers = ['hdevtools', 'hlint', 'liquid']
  • To pass extra options to liquidhaskell add:
let g:syntastic_haskell_liquid_args = "--diff"

About

Liquid Types For Haskell

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Haskell 82.3%
  • JavaScript 8.9%
  • CSS 4.5%
  • C 2.6%
  • Coq 0.5%
  • TeX 0.3%
  • Other 0.9%