Skip to content

Commit

Permalink
Rewrite recursion into iteration (Tarjan's SCC algorithm and YYFILL s…
Browse files Browse the repository at this point in the history
…tates).

This is to avoid stack overflow on large RE (especially on instrumented
builds that have larger stack frames, like AddressSanitizer).

Stack overflow reported by Agostino Sarubbo.
Related to #219 "overflow-1.re test fails on system with small stack".
  • Loading branch information
skvadrik committed Apr 21, 2020
1 parent 637d4e4 commit fd63499
Showing 1 changed file with 137 additions and 108 deletions.
245 changes: 137 additions & 108 deletions src/dfa/fillpoints.cc
Original file line number Diff line number Diff line change
Expand Up @@ -6,156 +6,185 @@
#include "src/dfa/dfa.h"


namespace re2c {

/*
* node [finding strongly connected components of DFA]
* note [finding strongly connected components of DFA]
*
* A slight modification of Tarjan's algorithm.
*
* The algorithm walks graph in deep-first order. It maintains a stack
* of nodes that have already been visited but haven't been assigned to
* SCC yet. For each node the algorithm calculates 'lowlink': index of
* the highest ancestor node reachable in one step from a descendant of
* the node. Lowlink is used to determine when a set of nodes should be
* popped off the stack into a new SCC.
* The algorithm traverses the DFA in depth-first order. It maintains a stack
* of states that have already been visited but haven't been assigned to an SCC
* yet. For each state the algorithm calculates 'lowlink': index of the highest
* ancestor state reachable in one step from a descendant of this state.
* Lowlink is used to determine when a set of states should be popped off stack
* into a new SCC.
*
* We use lowlink to hold different kinds of information:
* - values in range [0 .. stack size] mean that this node is on stack
* (link to a node with the smallest index reachable from this one)
* - SCC_UND means that this node has not been visited yet
* - SCC_INF means that this node has already been popped off stack
*
* We use stack size (rather than topological sort index) as unique index
* of a node on stack. This is safe because indices of nodes on stack are
* still unique and less than indices of nodes that have been popped off
* stack (SCC_INF).
* - values in range [0 .. stack size] mean that the state is on stack (a
* link to a state with the smallest index reachable from this one)
* - SCC_UND means that this state has not been visited yet
* - SCC_INF means that this state has already been popped off stack
*
* We use stack size (rather than topological sort index) as a unique index of
* the state on stack. This is safe because the indices of states on stack are
* unique and less than the indices of states that have been popped off stack
* (SCC_INF).
*/

namespace re2c {
namespace {

static const size_t SCC_INF = std::numeric_limits<size_t>::max();
static const size_t SCC_UND = SCC_INF - 1;


static bool loopback(size_t node, size_t narcs, const size_t *arcs)
static bool loopback(size_t state, size_t narcs, const size_t *arcs)
{
for (size_t i = 0; i < narcs; ++i)
{
if (arcs[i] == node)
{
return true;
}
for (size_t i = 0; i < narcs; ++i) {
if (arcs[i] == state) return true;
}
return false;
}

struct StackItem {
size_t state; // current state
size_t symbol; // next arc to be visited in this state
size_t link; // Tarjan's "lowlink"
};

static void scc(
const dfa_t &dfa,
std::stack<size_t> &stack,
std::vector<size_t> &lowlink,
std::vector<bool> &trivial,
size_t i)
// Tarjan's algorithm
static void scc(const dfa_t &dfa, std::vector<bool> &trivial,
std::vector<StackItem> &stack_dfs)
{
const size_t link = stack.size();
lowlink[i] = link;
stack.push(i);

const size_t *arcs = dfa.states[i]->arcs;
for (size_t c = 0; c < dfa.nchars; ++c)
{
const size_t j = arcs[c];
if (j != dfa_t::NIL)
{
if (lowlink[j] == SCC_UND)
{
scc(dfa, stack, lowlink, trivial, j);
}
if (lowlink[j] < lowlink[i])
{
lowlink[i] = lowlink[j];
}
}
}
std::vector<size_t> lowlink(dfa.states.size(), SCC_UND);
std::stack<size_t> stack;

if (lowlink[i] == link)
{
// SCC is non-trivial (has loops) iff it either:
// - consists of multiple nodes (they all must be interconnected)
// - consists of single node which loops back to itself
trivial[i] = i == stack.top()
&& !loopback(i, dfa.nchars, arcs);

size_t j;
do
{
j = stack.top();
stack.pop();
lowlink[j] = SCC_INF;
}
while (j != i);
}
}
StackItem x0 = {0, 0, 0};
stack_dfs.push_back(x0);

while (!stack_dfs.empty()) {
const size_t i = stack_dfs.back().state;
size_t c = stack_dfs.back().symbol;
size_t link = stack_dfs.back().link;
stack_dfs.pop_back();

static void calc_fill(
const dfa_t &dfa,
const std::vector<bool> &trivial,
std::vector<size_t> &fill,
size_t i)
{
if (fill[i] == SCC_UND)
{
fill[i] = 0;
const size_t *arcs = dfa.states[i]->arcs;
for (size_t c = 0; c < dfa.nchars; ++c)
{

if (c == 0) {
// DFS recursive enter
DASSERT(lowlink[i] == SCC_UND);
link = lowlink[i] = stack.size();
stack.push(i);
}
else {
// DFS recursive return (from one of successor states)
const size_t j = arcs[c - 1];
DASSERT(lowlink[j] != SCC_UND);
lowlink[i] = std::min(lowlink[i], lowlink[j]);
}

// find the next successor state that hasn't been visited yet
for (; c < dfa.nchars; ++c) {
const size_t j = arcs[c];
if (j != dfa_t::NIL)
{
calc_fill(dfa, trivial, fill, j);
size_t max = 1;
if (trivial[j])
{
max += fill[j];
}
if (max > fill[i])
{
fill[i] = max;
if (j != dfa_t::NIL) {
if (lowlink[j] == SCC_UND) {
break;
}
lowlink[i] = std::min(lowlink[i], lowlink[j]);
}
}

if (c < dfa.nchars) {
// recurse into the next successor state
StackItem x1 = {i, c + 1, link};
stack_dfs.push_back(x1);
StackItem x2 = {arcs[c], 0, SCC_UND};
stack_dfs.push_back(x2);
}
else if (lowlink[i] == link) {
// all successors have been visited
// SCC is non-trivial (has loops) if either:
// - it contains multiple interconnected states
// - it contains a single self-looping state
trivial[i] = i == stack.top() && !loopback(i, dfa.nchars, arcs);

for (;;) {
const size_t j = stack.top();
stack.pop();
lowlink[j] = SCC_INF;
if (i == j) break;
}
}
}
}


void fillpoints(const dfa_t &dfa, std::vector<size_t> &fill)
static void calc_fill(const dfa_t &dfa, const std::vector<bool> &trivial,
std::vector<StackItem> &stack_dfs, std::vector<size_t> &fill)
{
const size_t size = dfa.states.size();
const size_t nstates = dfa.states.size();
fill.resize(nstates, SCC_UND);

// find DFA states that belong to non-trivial SCC
std::stack<size_t> stack;
std::vector<size_t> lowlink(size, SCC_UND);
std::vector<bool> trivial(size, false);
scc(dfa, stack, lowlink, trivial, 0);
StackItem x0 = {0, 0, SCC_INF};
stack_dfs.push_back(x0);

// for each DFA state, calculate YYFILL argument:
// maximal path length to the next YYFILL state
fill.resize(size, SCC_UND);
calc_fill(dfa, trivial, fill, 0);
while (!stack_dfs.empty()) {
const size_t i = stack_dfs.back().state;
size_t c = stack_dfs.back().symbol;
stack_dfs.pop_back();

const size_t *arcs = dfa.states[i]->arcs;

if (c == 0) {
// DFS recursive enter
if (fill[i] != SCC_UND) continue;
fill[i] = 0;
}
else {
// DFS recursive return (from one of successor states)
const size_t j = arcs[c - 1];
DASSERT(fill[i] != SCC_UND && fill[j] != SCC_UND);
fill[i] = std::max(fill[i], 1 + (trivial[j] ? fill[j] : 0));
}

// find the next successor state that hasn't been visited yet
for (; c < dfa.nchars; ++c) {
const size_t j = arcs[c];
if (j != dfa_t::NIL) break;
}

if (c < dfa.nchars) {
// recurse into the next successor state
StackItem x1 = {i, c + 1, SCC_INF};
stack_dfs.push_back(x1);
StackItem x2 = {arcs[c], 0, SCC_INF};
stack_dfs.push_back(x2);
}
}

// The following states must trigger YYFILL:
// - inital state
// - all states in non-trivial SCCs
// for other states, reset YYFILL argument to zero
for (size_t i = 1; i < size; ++i)
{
if (trivial[i])
{
for (size_t i = 1; i < nstates; ++i) {
if (trivial[i]) {
fill[i] = 0;
}
}
}

} // anonymous namespace

void fillpoints(const dfa_t &dfa, std::vector<size_t> &fill)
{
const size_t nstates = dfa.states.size();
std::vector<bool> trivial(nstates, false);
std::vector<StackItem> stack_dfs;
stack_dfs.reserve(nstates);

// find DFA states that belong to non-trivial SCC
scc(dfa, trivial, stack_dfs);

// for each DFA state, calculate YYFILL argument:
// maximal path length to the next YYFILL state
calc_fill(dfa, trivial, stack_dfs, fill);
}

} // namespace re2c

0 comments on commit fd63499

Please sign in to comment.