Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
man
 
 
src
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

cran checks R build status Travis-CI Build Status CRAN_Status_Badge downloads

lvmcomp

A R package for analyzing large scale latent variable models with efficient parallel algorithms

Description

Provides stochastic EM algorithms for latent variable models with a high-dimensional latent space. So far, we provide functions for confirmatory item factor analysis based on the multidimensional two parameter logistic (M2PL) model and the generalized multidimensional partial credit model. These functions scale well for problems with many latent traits (e.g., thirty or even more) and are virtually tuning-free. The computation is facilitated by multiprocessing 'OpenMP' API. For more information, please refer to: Zhang, S., Chen, Y., & Liu, Y. (2018). An Improved Stochastic EM Algorithm for Large-scale Full-information Item Factor Analysis. British Journal of Mathematical and Statistical Psychology. doi:10.1111/bmsp.12153.

About

A R package for analyzing large scale latent variable models with efficient parallel algorithms

Resources

Releases

No releases published

Packages

No packages published
You can’t perform that action at this time.