Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?


Failed to load latest commit information.
Latest commit message
Commit time
March 7, 2023 22:27
December 6, 2021 19:53
October 12, 2021 17:33
November 29, 2022 17:17
July 22, 2021 22:25

ColabFold - v1.5.2

+ 31Jul2023: 2023/07/31: The ColabFold MSA server is back to normal
+            It was using older DB (UniRef30 2202/PDB70 220313) from 27th ~8:30 AM CEST to 31st ~11:10 AM CEST.
+ 12Jun2023: New databases! UniRef30 updated to 2302 and PDB to 230517.
+            We now use PDB100 instead of PDB70 (see notes in the [main]( notebook).
+ 12Jun2023: We introduced a new default pairing strategy:
+            Previously, for multimer predictions with more than 2 chains,
+            we only pair if all sequences taxonomically match ("complete" pairing).
+            The new default "greedy" strategy pairs any taxonomically matching subsets.

For details of what was changed in v1.5, see change log!

Making Protein folding accessible to all via Google Colab!

Notebooks monomers complexes mmseqs2 jackhmmer templates
AlphaFold2_mmseqs2 Yes Yes Yes No Yes
AlphaFold2_batch Yes Yes Yes No Yes
AlphaFold2 (from Deepmind) Yes Yes No Yes No
relax_amber (relax input structure)
ESMFold Yes Maybe No No No
BETA (in development) notebooks
RoseTTAFold2 Yes Yes Yes No WIP
OmegaFold Yes Maybe No No No
OLD retired notebooks
RoseTTAFold Yes No Yes No No
AlphaFold2_advanced Yes Yes Yes Yes No
AlphaFold2_complexes No Yes No No No
AlphaFold2_jackhmmer Yes No Yes Yes No


  • Where can I chat with other ColabFold users?
  • Can I use the models for Molecular Replacement?
    • Yes, but be CAREFUL, the bfactor column is populated with pLDDT confidence values (higher = better). Phenix.phaser expects a "real" bfactor, where (lower = better). See post from Claudia Millán.
  • What is the maximum length?
    • Limits depends on free GPU provided by Google-Colab fingers-crossed
    • For GPU: Tesla T4 or Tesla P100 with ~16G the max length is ~2000
    • For GPU: Tesla K80 with ~12G the max length is ~1000
    • To check what GPU you got, open a new code cell and type !nvidia-smi
  • Is it okay to use the MMseqs2 MSA server (cf.run_mmseqs2) on a local computer?
    • You can access the server from a local computer if you queries are serial from a single IP. Please do not use multiple computers to query the server.
  • Where can I download the databases used by ColabFold?
  • I want to render my own images of the predicted structures, how do I color by pLDDT?
    • In pymol for AlphaFold structures: spectrum b, red_yellow_green_cyan_blue, minimum=50, maximum=90
    • If you want to use AlphaFold Colours (credit: Konstantin Korotkov)
      set_color n0, [0.051, 0.341, 0.827]
      set_color n1, [0.416, 0.796, 0.945]
      set_color n2, [0.996, 0.851, 0.212]
      set_color n3, [0.992, 0.490, 0.302]
      color n0, b < 100; color n1, b < 90
      color n2, b < 70;  color n3, b < 50
    • In pymol for RoseTTAFold structures: spectrum b, red_yellow_green_cyan_blue, minimum=0.5, maximum=0.9
  • What is the difference between the AlphaFold2_advanced and AlphaFold2_mmseqs2 (_batch) notebook for complex prediction?
    • We currently have two different ways to predict protein complexes: (1) using the AlphaFold2 model with residue index jump and (2) using the AlphaFold2-multimer model. AlphaFold2_advanced supports (1) and AlphaFold2_mmseqs2 (_batch) (2).
  • What is the difference between localcolabfold and the pip installable colabfold_batch?
    • LocalColabFold is an installer script designed to make ColabFold functionality available on local users' machines. It supports wide range of operating systems, such as Windows 10 or later (using Windows Subsystem for Linux 2), macOS, and Linux.
  • Is there a way to amber-relax structures without having to rerun alphafold/colabfold from scratch?

Running locally

For instructions on how to install ColabFold locally see: localcolabfold

Generating MSAs for large scale structure/complex predictions

First create a directory for the databases on a disk with sufficient storage (940GB (!)). Depending on where you are, this will take a couple of hours:

./ /path/to/db_folder

Download and unpack mmseqs (Note: The required features aren't in a release yet, so currently, you need to compile the latest version from source yourself or use a static binary). If mmseqs is not in your PATH, replace mmseqs below with the path to your mmseqs:

# This needs a lot of CPU
colabfold_search input_sequences.fasta /path/to/db_folder msas
# This needs a GPU
colabfold_batch msas predictions

This will create intermediate folder msas that contains all input multiple sequence alignments formated as a3m files and a predictions folder with all predicted pdb,json and png files.

Searches against the ColabFoldDB can be done in two different modes:

(1) Batch searches with many sequences against the ColabFoldDB quires a machine with approx. 128GB RAM. The search should be performed on the same machine that called since the database index size is adjusted to the main memory size. To search on computers with less main memory delete the index by removing all .idx files, this will force MMseqs2 to create an index on the fly in memory. MMSeqs2 is optimized for large input sequence sets sizes. For batch searches use the --db-load-mode 0 option.

(2) single query searches require the full index (the .idx files) to be kept in memory. This can be done with e.g. by using vmtouch. Thus, this type of search requires a machine with at least 768GB RAM for the ColabfoldDB. If the index is in memory use to --db-load-mode 3 parameter in colabfold_search to avoid index loading overhead. If they database is already in memory use --db-load-mode 2 option.

Tutorials & Presentations

  • ColabFold Tutorial presented at the Boston Protein Design and Modeling Club. [video] [slides].

Projects based on ColabFold or helpers


  • We would like to thank the RoseTTAFold and AlphaFold team for doing an excellent job open sourcing the software.
  • Also credit to David Koes for his awesome py3Dmol plugin, without whom these notebooks would be quite boring!
  • A colab by Sergey Ovchinnikov (@sokrypton), Milot Mirdita (@milot_mirdita) and Martin Steinegger (@thesteinegger).

How do I reference this work?

  • Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S and Steinegger M. ColabFold: Making protein folding accessible to all.
    Nature Methods (2022) doi: 10.1038/s41592-022-01488-1
  • If you’re using AlphaFold, please also cite:
    Jumper et al. "Highly accurate protein structure prediction with AlphaFold."
    Nature (2021) doi: 10.1038/s41586-021-03819-2
  • If you’re using AlphaFold-multimer, please also cite:
    Evans et al. "Protein complex prediction with AlphaFold-Multimer."
    biorxiv (2021) doi: 10.1101/2021.10.04.463034v1
  • If you are using RoseTTAFold, please also cite:
    Minkyung et al. "Accurate prediction of protein structures and interactions using a three-track neural network."
    Science (2021) doi: 10.1126/science.abj8754


OLD Updates

  27Jul2023: ColabFold MSA server issue:
             We are using the backup server with old databases
             (UniRef30 2202/PDB70 220313) starting from ~8:30 AM CEST until we resolve the issue.
             Resolved on 31Jul2023 ~11:10 CEST.
  30Apr2023: Amber is working again in our ColabFold Notebook
  29Apr2023: Amber is not working in our Notebook due to Colab update
  18Feb2023: v1.5.2 - fixing: fixing memory leak for large proteins
                    - fixing: --use_dropout (random seed was not changing between recycles)
  06Feb2023: v1.5.1 - fixing: --save-all/--save-recycles
  04Feb2023: v1.5.0 - ColabFold updated to use AlphaFold v2.3.1!
  03Jan2023: The MSA server's faulty hardware from 12/26 was replaced.
             There were intermittent failures on 12/26 and 1/3. Currently, 
             there are no known issues. Let us know if you experience any.
  10Oct2022: Bugfix: random_seed was not being used for alphafold-multimer.
             Same structure was returned regardless of defined seed. This
             has been fixed!
  13Jul2022: We have set up a new ColabFold MSA server provided by Korean
             Bioinformation Center. It provides accelerated MSA generation, 
             we updated the UniRef30 to 2022_02 and PDB/PDB70 to 220313.
  11Mar2022: We use in default AlphaFold-multimer-v2 weights for complex modeling. 
             We also offer the old complex modes "AlphaFold-ptm" or "AlphaFold-multimer-v1"
  04Mar2022: ColabFold now uses a much more powerful server for MSAs and searches through the ColabFoldDB instead of BFD/MGnify. 
             Please let us know if you observe any issues.
  26Jan2022: AlphaFold2_mmseqs2, AlphaFold2_batch and colabfold_batch's multimer complexes predictions are 
             now in default reranked by iptmscore*0.8+ptmscore*0.2 instead of ptmscore
  16Aug2021: WARNING - MMseqs2 API is undergoing upgrade, you may see error messages.
  17Aug2021: If you see any errors, please report them.
  17Aug2021: We are still debugging the MSA generation procedure...
  20Aug2021: WARNING - MMseqs2 API is undergoing upgrade, you may see error messages.
             To avoid Google Colab from crashing, for large MSA we did -diff 1000 to get 
             1K most diverse sequences. This caused some large MSA to degrade in quality,
             as sequences close to query were being merged to single representive.
             We are working on updating the server (today) to fix this, by making sure
             that both diverse and sequences close to query are included in the final MSA.
             We'll post update here when update is complete.
  21Aug2021  The MSA issues should now be resolved! Please report any errors you see.
             In short, to reduce MSA size we filter (qsc > 0.8, id > 0.95) and take 3K
             most diverse sequences at different qid (sequence identity to query) intervals 
             and merge them. More specifically 3K sequences at qid at (0→0.2),(0.2→0.4),
             (0.4→0.6),(0.6→0.8) and (0.8→1). If you submitted your sequence between
             16Aug2021 and 20Aug2021, we recommend submitting again for best results!
  21Aug2021  The use_templates option in AlphaFold2_mmseqs2 is not properly working. We are
             working on fixing this. If you are not using templates, this does not affect the
             the results. Other notebooks that do not use_templates are unaffected.
  21Aug2021  The templates issue is resolved!
  11Nov2021  [AlphaFold2_mmseqs2] now uses Alphafold-multimer for complex (homo/hetero-oligomer) modeling.
             Use [AlphaFold2_advanced] notebook for the old complex prediction logic. 
  11Nov2021  ColabFold can be installed locally using pip!
  14Nov2021  Template based predictions works again in the Alphafold2_mmseqs2 notebook.
  14Nov2021  WARNING "Single-sequence" mode in AlphaFold2_mmseqs2 and AlphaFold2_batch was broken 
             starting 11Nov2021. The MMseqs2 MSA was being used regardless of selection.
  14Nov2021  "Single-sequence" mode is now fixed.
  20Nov2021  WARNING "AMBER" mode in AlphaFold2_mmseqs2 and AlphaFold2_batch was broken 
             starting 11Nov2021. Unrelaxed proteins were returned instead.
  20Nov2021  "AMBER" is fixed thanks to Kevin Pan