Configuration Integration with HashiCorp Vault
Java Shell Batchfile
Latest commit 14c648a Jan 17, 2017 @mp911de mp911de Upgrade to Spring Vault 1.0 M2.
Closes gh-70.


Spring Cloud Vault Config provides client-side support for externalized configuration in a distributed system. With Hashicorp’s Vault you have a central place to manage external secret properties for applications across all environments. Vault can manage static and dynamic secrets such as username/password for remote applications/resources and provide credentials for external services such as MySQL, PostgreSQL, Apache Cassandra, MongoDB, Consul, AWS and more.


Spring Cloud Vault Config Client

Specifically for Spring applications:

Quick Start


To get started with Vault and this guide you need a *NIX-like operating systems that provides:

  • wget, openssl and unzip

  • at least Java 7 and a properly configured JAVA_HOME environment variable

Install Vault

$ src/test/bash/

Create SSL certificates for Vault

$ src/test/bash/
Note creates certificates in work/ca and a JKS truststore work/keystore.jks. If you want to run Spring Cloud Vault using this quickstart guide you need to configure the truststore the property to file:work/keystore.jks.

Start Vault server

$ src/test/bash/

Vault is started listening on using the inmem storage and https. Vault is sealed and not initialized when starting up so you need to initialize it first.

$ export VAULT_ADDR="https://localhost:8200"
$ export VAULT_SKIP_VERIFY=true # Don't do this for production
$ vault init

You should see something like:

Key 1: 7149c6a2e16b8833f6eb1e76df03e47f6113a3288b3093faf5033d44f0e70fe701
Key 2: 901c534c7988c18c20435a85213c683bdcf0efcd82e38e2893779f152978c18c02
Key 3: 03ff3948575b1165a20c20ee7c3e6edf04f4cdbe0e82dbff5be49c63f98bc03a03
Key 4: 216ae5cc3ddaf93ceb8e1d15bb9fc3176653f5b738f5f3d1ee00cd7dccbe926e04
Key 5: b2898fc8130929d569c1677ee69dc5f3be57d7c4b494a6062693ce0b1c4d93d805
Initial Root Token: 19aefa97-cccc-bbbb-aaaa-225940e63d76

Vault initialized with 5 keys and a key threshold of 3. Please
securely distribute the above keys. When the Vault is re-sealed,
restarted, or stopped, you must provide at least 3 of these keys
to unseal it again.

Vault does not store the master key. Without at least 3 keys,
your Vault will remain permanently sealed.

Vault will initialize and return a set of unsealing keys and the root token. Pick 3 keys and unseal Vault. Store the Vault token in the VAULT_TOKEN environment variable.

$ vault unseal (Key 1)
$ vault unseal (Key 2)
$ vault unseal (Key 3)
$ export VAULT_TOKEN=(Root token)

Spring Cloud Vault accesses different resources. By default, the secret backend is enabled which accesses secret config settings via JSON endpoints.

The HTTP service has resources in the form:


where the "application" is injected as the in the SpringApplication (i.e. what is normally "application" in a regular Spring Boot app), "profile" is an active profile (or comma-separated list of properties). Properties retrieved from Vault will be used "as-is" without further prefixing of the property names.

Client Side Usage

To use these features in an application, just build it as a Spring Boot application that depends on spring-cloud-vault-config (e.g. see the test cases). Example Maven configuration:

Example 1. pom.xml
    <relativePath /> <!-- lookup parent from repository -->



<!-- repositories also needed for snapshots and milestones -->

Then you can create a standard Spring Boot application, like this simple HTTP server:

public class Application {

    public String home() {
        return "Hello World!";

    public static void main(String[] args) {, args);

When it runs it will pick up the external configuration from the default local Vault server on port 8200 if it is running. To modify the startup behavior you can change the location of the Vault server using (like but for the bootstrap phase of an application context), e.g.

Example 2. bootstrap.yml
    host: localhost
    port: 8200
    scheme: https
    connection-timeout: 5000
    read-timeout: 15000
        order: -10
  • host sets the hostname of the Vault host. The host name will be used for SSL certificate validation

  • port sets the Vault port

  • scheme setting the scheme to http will use plain HTTP. Supported schemes are http and https.

  • connection-timeout sets the connection timeout in milliseconds

  • read-timeout sets the read timeout in milliseconds

  • config.order sets the order for the property source

Enabling further integrations requires additional dependencies and configuration. Depending on how you have set up Vault you might need additional configuration like SSL and authentication. Checkout these chapters in the reference guide.

If the application imports the spring-boot-starter-actuator project, the status of the vault server will be available via the /health endpoint.

The vault health indicator can be enabled or disabled through the property health.vault.enabled (default true)


Spring Cloud Vault Config supports multiple authentication mechanisms to authenticate applications with Vault.

For a quickstart, use the root token printed by the Vault initialization.

Example 3. bootstrap.yml
    token: 19aefa97-cccc-bbbb-aaaa-225940e63d76
Consider carefully your security requirements. Static token authentication is fine if you want quickly get started with Vault, but a static token is not protected any further. Any disclosure to unintended parties allows Vault use with the associated token roles.


Build requirements for Vault

Spring Cloud Vault Config requires SSL certificates and a running Vault instance listening on localhost:8200. Certificates and the Vault setup are scripted, the scripts are located in src/test/bash.

The following scripts need to be run prior to building the project for the tests to pass.

$ ./src/test/bash/
$ ./src/test/bash/
$ ./src/test/bash/

Changes to the documentation should be made to the adocs found under docs/src/main/asciidoc/

README.adoc can be re-generated via the following

$ ./docs/src/main/ruby/ > README.adoc

This script requires ruby and the asciidoctor gem installed (gem install asciidoctor)

Basic Compile and Test

To build the source you will need to install JDK 1.7.

Spring Cloud uses Maven for most build-related activities, and you should be able to get off the ground quite quickly by cloning the project you are interested in and typing

$ ./mvnw install
You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in the examples below. If you do that you also might need to add -P spring if your local Maven settings do not contain repository declarations for spring pre-release artifacts.
Be aware that you might need to increase the amount of memory available to Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed, please raise a ticket to get the settings added to source control.

For hints on how to build the project look in .travis.yml if there is one. There should be a "script" and maybe "install" command. Also look at the "services" section to see if any services need to be running locally (e.g. mongo or rabbit). Ignore the git-related bits that you might find in "before_install" since they’re related to setting git credentials and you already have those.

The projects that require middleware generally include a docker-compose.yml, so consider using Docker Compose to run the middeware servers in Docker containers. See the README in the scripts demo repository for specific instructions about the common cases of mongo, rabbit and redis.

If all else fails, build with the command from .travis.yml (usually ./mvnw install).


The spring-cloud-build module has a "docs" profile, and if you switch that on it will try to build asciidoc sources from src/main/asciidoc. As part of that process it will look for a README.adoc and process it by loading all the includes, but not parsing or rendering it, just copying it to ${main.basedir} (defaults to ${basedir}, i.e. the root of the project). If there are any changes in the README it will then show up after a Maven build as a modified file in the correct place. Just commit it and push the change.

Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.

Importing into eclipse with m2eclipse

We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse marketplace".

Older versions of m2e do not support Maven 3.3, so once the projects are imported into Eclipse you will also need to tell m2eclipse to use the right profile for the projects. If you see many different errors related to the POMs in the projects, check that you have an up to date installation. If you can’t upgrade m2e, add the "spring" profile to your settings.xml. Alternatively you can copy the repository settings from the "spring" profile of the parent pom into your settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following command:

$ ./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file menu.


Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard Github development process, using Github tracker for issues and merging pull requests into master. If you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the Contributor License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but it does mean that we can accept your contributions, and you will get an author credit if we do. Active contributors might be asked to join the core team, and given the ability to merge pull requests.

Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are expected to uphold this code. Please report unacceptable behavior to

Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the original pull request but before a merge.

  • Use the Spring Framework code format conventions. If you use Eclipse you can import formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

  • Make sure all new .java files to have a simple Javadoc class comment with at least an @author tag identifying you, and preferably at least a paragraph on what the class is for.

  • Add the ASF license header comment to all new .java files (copy from existing files in the project)

  • Add yourself as an @author to the .java files that you modify substantially (more than cosmetic changes).

  • Add some Javadocs and, if you change the namespace, some XSD doc elements.

  • A few unit tests would help a lot as well — someone has to do it.

  • If no-one else is using your branch, please rebase it against the current master (or other target branch in the main project).

  • When writing a commit message please follow these conventions, if you are fixing an existing issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).