Skip to content

Commit

Permalink
Adds GemFireVectorStore Auto-Configuration
Browse files Browse the repository at this point in the history
- Adds spring boot auto-configuration support for GemFireVectorStore
- Adds integration test GemFireVectorStoreAutoConfigurationIT
- Includes gemfire-testcontainers in integration tests
- Adds unit test GemFireVectorStorePropertiesTests
- Refactors GemFireVectorStore.java extracting GemFireVectorStoreConfig.java
- Renames spring-ai-gemfire to spring-ai-gemfire-store
- Adds GemFireConnectionDetails
- Adds GemFireVectorStoreProperties with default values

Co-authored-by: Louis Jacome <louis.jacome@broadcom.com>
Co-authored-by: Jason Huyn <jason.huynh@broadcom.com>
  • Loading branch information
3 people authored and Rene Jacome committed May 21, 2024
1 parent 2abf10d commit 8342491
Show file tree
Hide file tree
Showing 14 changed files with 978 additions and 246 deletions.
6 changes: 6 additions & 0 deletions spring-ai-bom/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -403,6 +403,12 @@
<version>${project.version}</version>
</dependency>

<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-gemfire-store-spring-boot-starter</artifactId>
<version>${project.version}</version>
</dependency>

<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-zhipuai-spring-boot-starter</artifactId>
Expand Down
Original file line number Diff line number Diff line change
@@ -1,122 +1,131 @@
= GemFire Vector Store

This section walks you through setting up the GemFire VectorStore to store document embeddings and perform similarity searches.
This section walks you through setting up the `GemFireVectorStore` to store document embeddings and perform similarity searches.

link:https://tanzu.vmware.com/gemfire[GemFire] is an ultra high speed in-memory data and compute grid, with vector extensions to store and search vectors efficiently.
link:https://tanzu.vmware.com/gemfire[GemFire] is a distributed, in-memory, key-value store that performs read and write operations at blazingly fast speeds. It offers highly available parallel message queues, continuous availability, and an event-driven architecture you can scale dynamically with no downtime. As your data size requirements increase to support high-performance, real-time apps, GemFire can scale linearly with ease.

link:https://docs.vmware.com/en/VMware-GemFire-VectorDB/1.0/gemfire-vectordb/overview.html[GemFire VectorDB] extends GemFire's capabilities, serving as a versatile vector database that efficiently stores, retrieves, and performs vector searches through a distributed and resilient infrastructure:

Capabilities:
- Create Indexes
- Store vectors and the associated metadata
- Perform vector searches based on similarity
link:https://docs.vmware.com/en/VMware-GemFire-VectorDB/1.0/gemfire-vectordb/overview.html[GemFire VectorDB] extends GemFire's capabilities, serving as a versatile vector database that efficiently stores, retrieves, and performs vector similarity searches.

== Prerequisites

Access to a GemFire cluster with the link:https://docs.vmware.com/en/VMware-GemFire-VectorDB/1.0/gemfire-vectordb/install.html[GemFire Vector Database] extension installed.
You can download the GemFire VectorDB extension from the link:https://network.pivotal.io/products/gemfire-vectordb/[VMware Tanzu Network] after signing in.
1. A GemFire cluster with the GemFire VectorDB extension enabled
- link:https://docs.vmware.com/en/VMware-GemFire-VectorDB/1.0/gemfire-vectordb/install.html[Install GemFire VectorDB extension]

2. An `EmbeddingClient` bean to compute the document embeddings. Refer to the xref:api/embeddings.adoc#available-implementations[EmbeddingClient] section for more information.

== Dependencies

Add these dependencies to your project:
=== Maven

- Embedding Client boot starter, required for calculating embeddings.
- Transformers Embedding (Local) and follow the ONNX Transformers Embedding instructions.
To use just the `GemFireVectorStore`, add the following dependency to your project’s Maven `pom.xml`:

[source,xml]
[source, xml]
----
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-transformers</artifactId>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-gemfire-store</artifactId>
</dependency>
----

- Add the GemFire VectorDB dependencies
To enable Spring Boot’s Auto-Configuration for the `GemFireVectorStore`, also add the following to your project’s Maven `pom.xml`:

[source,xml]
[source, xml]
----
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-gemfire-store</artifactId>
<artifactId>spring-ai-gemfire-store-spring-boot-starter</artifactId>
</dependency>
----


TIP: Refer to the xref:getting-started.adoc#dependency-management[Dependency Management] section to add the Spring AI BOM to your build file.
=== Gradle

For Gradle users, add the following to your `build.gradle` file under the dependencies block to use just the `GemFireVectorStore`:

== Sample Code
[souce, xml]
----
dependencies {
implementation 'org.springframework.ai:spring-ai-gemfire-store'
}
----

- To configure GemFire in your application, use the following setup:
To enable Spring Boot’s Auto-Configuration for the `GemFireVectorStore`, also include this dependency:

[source,java]
[source, xml]
----
@Bean
public GemFireVectorStoreConfig gemFireVectorStoreConfig() {
return GemFireVectorStoreConfig.builder()
.withUrl("http://localhost:8080")
.withIndexName("spring-ai-test-index")
.build();
dependencies {
implementation 'org.springframework.ai:spring-ai-gemfire-store-spring-boot-starter'
}
----

- Create a GemFireVectorStore instance connected to your GemFire VectorDB:
== Usage

- Create a `GemFireVectorStore` instance connected to the GemFire cluster:

[source,java]
----
@Bean
public VectorStore vectorStore(GemFireVectorStoreConfig config, EmbeddingClient embeddingClient) {
return new GemFireVectorStore(config, embeddingClient);
public VectorStore vectorStore(EmbeddingClient embeddingClient) {
return new GemFireVectorStore(new GemFireVectorStoreConfig()
.setIndexName("my-vector-index")
.setPort(7071), embeddingClient);
}
----
- Create a Vector Index which will configure GemFire region.

[NOTE]
====
The default configuration connects to a GemFire cluster at `localhost:8080`
====

- In your application, create a few documents:

[source,java]
----
public void createIndex() {
try {
CreateRequest createRequest = new CreateRequest();
createRequest.setName(INDEX_NAME);
createRequest.setBeamWidth(20);
createRequest.setMaxConnections(16);
ObjectMapper objectMapper = new ObjectMapper();
String index = objectMapper.writeValueAsString(createRequest);
client.post()
.contentType(MediaType.APPLICATION_JSON)
.bodyValue(index)
.retrieve()
.bodyToMono(Void.class)
.block();
}
catch (Exception e) {
logger.warn("An unexpected error occurred while creating the index");
}
}
----

- Create some documents:
List<Document> documents = List.of(
new Document("Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!", Map.of("country", "UK", "year", 2020)),
new Document("The World is Big and Salvation Lurks Around the Corner", Map.of()),
new Document("You walk forward facing the past and you turn back toward the future.", Map.of("country", "NL", "year", 2023)));
----

- Add the documents to the vector store:

[source,java]
----
List<Document> documents = List.of(
new Document("1", getText("classpath:/test/data/spring.ai.txt"), Map.of("meta1", "meta1")),
new Document("2", getText("classpath:/test/data/time.shelter.txt"), Map.of()),
new Document("3", getText("classpath:/test/data/great.depression.txt"), Map.of("meta2", "meta2")));
vectorStore.add(documents);
----

- Add the documents to GemFire VectorDB:
- And to retrieve documents using similarity search:

[source,java]
----
vectorStore.add(List.of(document));
List<Document> results = vectorStore.similaritySearch(
SearchRequest.query("Spring").withTopK(5));
----

- And finally, retrieve documents similar to a query:
You should retrieve the document containing the text "Spring AI rocks!!".

You can also limit the number of results using a similarity threshold:
[source,java]
----
List<Document> results = vectorStore.similaritySearch("Spring", 5);
List<Document> results = vectorStore.similaritySearch(
SearchRequest.query("Spring").withTopK(5)
.withSimilarityThreshold(0.5d));
----

If all goes well, you should retrieve the document containing the text "Spring AI rocks!!".
== GemFireVectorStore properties

You can use the following properties in your Spring Boot configuration to further configure the `GemFireVectorStore`.

|===
|Property|Default value

|`spring.ai.vectorstore.gemfire.host`|localhost
|`spring.ai.vectorstore.gemfire.port`|8080
|`spring.ai.vectorstore.gemfire.index-name`|spring-ai-gemfire-store
|`spring.ai.vectorstore.gemfire.beam-width`|100
|`spring.ai.vectorstore.gemfire.max-connections`|16
|`spring.ai.vectorstore.gemfire.vector-similarity-function`|COSINE
|`spring.ai.vectorstore.gemfire.fields`|[]
|`spring.ai.vectorstore.gemfire.buckets`|0
|===
14 changes: 14 additions & 0 deletions spring-ai-spring-boot-autoconfigure/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,13 @@
<connection>git://github.com/spring-projects/spring-ai.git</connection>
<developerConnection>git@github.com:spring-projects/spring-ai.git</developerConnection>
</scm>
<repositories>
<repository>
<id>gemfire-release-repo</id>
<name>Pivotal GemFire Release Repository</name>
<url>https://commercial-repo.pivotal.io/data3/gemfire-release-repo/gemfire</url>
</repository>
</repositories>

<dependencies>

Expand Down Expand Up @@ -267,6 +274,13 @@
<optional>true</optional>
</dependency>

<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-gemfire-store</artifactId>
<version>${project.parent.version}</version>
<optional>true</optional>
</dependency>

<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-minimax</artifactId>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
/*
* Copyright 2023 - 2024 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.springframework.ai.autoconfigure.vectorstore.gemfire;

import org.springframework.boot.autoconfigure.service.connection.ConnectionDetails;

/**
* @author Geet Rawat
*/
public interface GemFireConnectionDetails extends ConnectionDetails {

String getHost();

int getPort();

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
/*
* Copyright 2023-2024 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.springframework.ai.autoconfigure.vectorstore.gemfire;

import org.springframework.ai.embedding.EmbeddingClient;
import org.springframework.ai.vectorstore.GemFireVectorStore;
import org.springframework.ai.vectorstore.GemFireVectorStoreConfig;
import org.springframework.boot.autoconfigure.AutoConfiguration;
import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;
import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Bean;

/**
* @author Geet Rawat
*/
@AutoConfiguration
@ConditionalOnClass({ GemFireVectorStore.class, EmbeddingClient.class })
@EnableConfigurationProperties(GemFireVectorStoreProperties.class)
@ConditionalOnProperty(prefix = "spring.ai.vectorstore.gemfire", value = { "index-name" })
public class GemFireVectorStoreAutoConfiguration {

@Bean
@ConditionalOnMissingBean(GemFireConnectionDetails.class)
GemFireVectorStoreAutoConfiguration.PropertiesGemFireConnectionDetails gemfireConnectionDetails(
GemFireVectorStoreProperties properties) {
return new GemFireVectorStoreAutoConfiguration.PropertiesGemFireConnectionDetails(properties);
}

@Bean
@ConditionalOnMissingBean
public GemFireVectorStore vectorStore(EmbeddingClient embeddingClient, GemFireVectorStoreProperties properties,
GemFireConnectionDetails gemFireConnectionDetails) {
var config = new GemFireVectorStoreConfig();

config.setHost(gemFireConnectionDetails.getHost())
.setPort(gemFireConnectionDetails.getPort())
.setIndexName(properties.getIndexName())
.setBeamWidth(properties.getBeamWidth())
.setMaxConnections(properties.getMaxConnections())
.setBuckets(properties.getBuckets())
.setVectorSimilarityFunction(properties.getVectorSimilarityFunction())
.setFields(properties.getFields())
.setSslEnabled(properties.isSslEnabled());
return new GemFireVectorStore(config, embeddingClient);
}

private static class PropertiesGemFireConnectionDetails implements GemFireConnectionDetails {

private final GemFireVectorStoreProperties properties;

PropertiesGemFireConnectionDetails(GemFireVectorStoreProperties properties) {

this.properties = properties;
}

@Override
public String getHost() {
return this.properties.getHost();
}

@Override
public int getPort() {
return this.properties.getPort();
}

}

}
Loading

0 comments on commit 8342491

Please sign in to comment.