Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generalized Beta, also need param_estimate and stats_tbl #473

Closed
Tracked by #467
spsanderson opened this issue May 3, 2024 · 0 comments
Closed
Tracked by #467

Generalized Beta, also need param_estimate and stats_tbl #473

spsanderson opened this issue May 3, 2024 · 0 comments
Assignees
Labels
enhancement New feature or request

Comments

@spsanderson
Copy link
Owner

spsanderson commented May 3, 2024

Param Estimate

Function:

#' Estimate Generalized Beta Parameters
#'
#' @family Parameter Estimation
#' @family Generalized Beta
#'
#' @details This function will attempt to estimate the generalized Beta shape1, shape2, shape3, and rate
#' parameters given some vector of values.
#'
#' @description The function will return a list output by default, and if the parameter
#' `.auto_gen_empirical` is set to `TRUE` then the empirical data given to the
#' parameter `.x` will be run through the `tidy_empirical()` function and combined
#' with the estimated generalized Beta data.
#'
#' @param .x The vector of data to be passed to the function.
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
#' set to TRUE. This will automatically create the `tidy_empirical()` output
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
#' can then plot out the data using `$combined_data_tbl` from the function output.
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' set.seed(123)
#' x <- tidy_generalized_beta(100, .shape1 = 2, .shape2 = 3, 
#' .shape3 = 4, .rate = 5)[["y"]]
#' output <- util_generalized_beta_param_estimate(x)
#'
#' output$parameter_tbl
#'
#' output$combined_data_tbl %>%
#'   tidy_combined_autoplot()
#'
#' @return
#' A tibble/list
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @export
#'

util_generalized_beta_param_estimate <- function(.x, .auto_gen_empirical = TRUE) {
  
  # Tidyeval ----
  x_term <- as.numeric(.x)
  n <- length(x_term)
  
  # Checks ----
  if (!is.vector(x_term, mode = "numeric") || is.factor(x_term)) {
    rlang::abort(
      message = "'.x' must be a numeric vector.",
      use_cli_format = TRUE
    )
  }
  
  if (n < 2) {
    rlang::abort(
      message = "'.x' must contain at least two non-missing distinct values. All values of '.x' must be positive.",
      use_cli_format = TRUE
    )
  }
  
  # Negative log-likelihood function for generalized Beta distribution
  genbeta_lik <- function(params, data) {
    shape1 <- params[1]
    shape2 <- params[2]
    shape3 <- params[3]
    rate <- params[4]
    -sum(actuar::dgenbeta(data, shape1 = shape1, shape2 = shape2, 
                          shape3 = shape3, rate = rate, log = TRUE))
  }
  
  # Initial parameter guesses
  initial_params <- c(shape1 = 1, shape2 = 1, shape3 = 1, rate = 1)
  
  # Optimize to minimize the negative log-likelihood
  opt_result <- stats::optim(
    par = initial_params,
    fn = genbeta_lik,
    data = x_term
  )
  
  shape1 <- opt_result$par[["shape1"]]
  shape2 <- opt_result$par[["shape2"]]
  shape3 <- opt_result$par[["shape3"]]
  rate <- opt_result$par[["rate"]]
  
  # Return Tibble ----
  if (.auto_gen_empirical) {
    te <- tidy_empirical(.x = x_term)
    td <- tidy_generalized_beta(.n = n, .shape1 = round(shape1, 3), .shape2 = round(shape2, 3), .shape3 = round(shape3, 3), .rate = round(rate, 3))
    combined_tbl <- tidy_combine_distributions(te, td)
  }
  
  ret <- dplyr::tibble(
    dist_type = "Generalized Beta",
    samp_size = n,
    min = min(x_term),
    max = max(x_term),
    mean = mean(x_term),
    shape1 = shape1,
    shape2 = shape2,
    shape3 = shape3,
    rate = rate
  )
  
  # Return ----
  attr(ret, "tibble_type") <- "parameter_estimation"
  attr(ret, "family") <- "generalized_beta"
  attr(ret, "x_term") <- .x
  attr(ret, "n") <- n
  
  if (.auto_gen_empirical) {
    output <- list(
      combined_data_tbl = combined_tbl,
      parameter_tbl     = ret
    )
  } else {
    output <- list(
      parameter_tbl = ret
    )
  }
  
  return(output)
}

Example:

> x <- tidy_generalized_beta(100, .shape1 = 2, .shape2 = 3, 
+ .shape3 = 4, .rate = 5)[["y"]]
> output <- util_generalized_beta_param_estimate(x)
> 
> output$parameter_tbl
# A tibble: 1 × 9
  dist_type        samp_size    min   max  mean shape1 shape2 shape3  rate
  <chr>                <int>  <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl>
1 Generalized Beta       100 0.0944 0.196 0.153   5.70   5.44   2.05  4.67

image

Stats Tibble

Function:

#' Distribution Statistics
#'
#' @family Generalized Beta
#' @family Distribution Statistics
#'
#' @details This function will take in a tibble and return the statistics
#' of the given type of `tidy_` distribution. It is required that data be
#' passed from a `tidy_` distribution function.
#'
#' @description Returns distribution statistics in a tibble.
#'
#' @param .data The data being passed from a `tidy_` distribution function.
#'
#' @examples
#' library(dplyr)
#'
#' set.seed(123)
#' tidy_generalized_beta() |>
#'   util_generalized_beta_stats_tbl() |>
#'   glimpse()
#'
#' @return
#' A tibble
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @export
#' @rdname util_generalized_beta_stats_tbl
util_generalized_beta_stats_tbl <- function(.data) {
  
  # Immediate check for tidy_ distribution function
  if (!"tibble_type" %in% names(attributes(.data))) {
    rlang::abort(
      message = "You must pass data from the 'tidy_dist' function.",
      use_cli_format = TRUE
    )
  }
  
  if (attributes(.data)$tibble_type != "tidy_generalized_beta") {
    rlang::abort(
      message = "You must use 'tidy_generalized_beta()'",
      use_cli_format = TRUE
    )
  }
  
  # Data
  data_tbl <- dplyr::as_tibble(.data)
  
  atb <- attributes(data_tbl)
  shape1 <- atb$.shape1
  shape2 <- atb$.shape2
  shape3 <- atb$.shape3
  rate <- atb$.rate
  scale <- 1 / rate
  
  # Generalized Beta statistics calculation
  stat_mean <- ifelse(shape2 > 1, shape1 / (shape2 - 1), "undefined")
  stat_mode <- ifelse((shape1 > 1) & (shape2 > 2), (shape1 - 1) / (shape2 - 2), "undefined")
  stat_var <- ifelse(shape2 > 2, (shape1 * shape2) / ((shape2 - 1)^2 * (shape2 - 2)), "undefined")
  stat_sd <- ifelse(stat_var == "undefined", "undefined", sqrt(stat_var))
  stat_skewness <- ifelse(shape2 > 3, (2 * (shape2 - 2 * shape1) * sqrt(shape2 - 2)) / ((shape2 - 3) * sqrt(shape1 * (shape1 + shape2))), "undefined")
  stat_kurtosis <- ifelse(shape2 > 4, 3 + (6 * (shape2^3 - 2 * shape2^2 * (shape1 - 1) + shape1^2 * (shape1 + 1))) / (shape1 * (shape1 + 1) * (shape2 - 3) * (shape2 - 4)), "undefined")
  
  # Data Tibble
  ret <- dplyr::tibble(
    tidy_function = atb$tibble_type,
    function_call = atb$dist_with_params,
    distribution = dist_type_extractor(atb$tibble_type),
    distribution_type = atb$distribution_family_type,
    points = atb$.n,
    simulations = atb$.num_sims,
    mean = stat_mean,
    mode = stat_mode,
    range = paste0("0 to Inf"),
    std_dv = stat_sd,
    coeff_var = ifelse(stat_var == "undefined", "undefined", sqrt(stat_var) / stat_mean),
    skewness = stat_skewness,
    kurtosis = stat_kurtosis,
    computed_std_skew = tidy_skewness_vec(data_tbl$y),
    computed_std_kurt = tidy_kurtosis_vec(data_tbl$y),
    ci_lo = ci_lo(data_tbl$y),
    ci_hi = ci_hi(data_tbl$y)
  )
  
  # Return
  return(ret)
}

Example:

> set.seed(123)
> tidy_generalized_beta() |>
+   util_generalized_beta_stats_tbl() |>
+   glimpse()
Rows: 1
Columns: 17
$ tidy_function     <chr> "tidy_generalized_beta"
$ function_call     <chr> "Generalized Beta c(1, 1, 1, 1, 1)"
$ distribution      <chr> "Generalized Beta"
$ distribution_type <chr> "continuous"
$ points            <dbl> 50
$ simulations       <dbl> 1
$ mean              <chr> "undefined"
$ mode              <chr> "undefined"
$ range             <chr> "0 to Inf"
$ std_dv            <chr> "undefined"
$ coeff_var         <chr> "undefined"
$ skewness          <chr> "undefined"
$ kurtosis          <chr> "undefined"
$ computed_std_skew <dbl> -0.07917738
$ computed_std_kurt <dbl> 1.789811
$ ci_lo             <dbl> 0.03836872
$ ci_hi             <dbl> 0.9413363

AIC

Function:

#' Calculate Akaike Information Criterion (AIC) for Generalized Beta Distribution
#'
#' This function calculates the Akaike Information Criterion (AIC) for a generalized Beta
#' distribution fitted to the provided data.
#'
#' @family Utility
#' 
#' @author Steven P. Sanderson II, MPH
#' 
#' @description
#' This function estimates the shape1, shape2, shape3, and rate parameters of a generalized Beta distribution
#' from the provided data using maximum likelihood estimation,
#' and then calculates the AIC value based on the fitted distribution.
#'
#' @param .x A numeric vector containing the data to be fitted to a generalized Beta distribution.
#'
#' @details
#' This function fits a generalized Beta distribution to the provided data using maximum
#' likelihood estimation. It estimates the shape1, shape2, shape3, and rate parameters
#' of the generalized Beta distribution using maximum likelihood estimation. Then, it
#' calculates the AIC value based on the fitted distribution.
#'
#' Initial parameter estimates: The function uses reasonable initial estimates
#' for the shape1, shape2, shape3, and rate parameters of the generalized Beta distribution.
#'
#' Optimization method: The function uses the optim function for optimization.
#' You might explore different optimization methods within optim for potentially
#' better performance.
#'
#' Goodness-of-fit: While AIC is a useful metric for model comparison, it's
#' recommended to also assess the goodness-of-fit of the chosen model using
#' visualization and other statistical tests.
#'
#' @examples
#' # Example 1: Calculate AIC for a sample dataset
#' set.seed(123)
#' x <- tidy_generalized_beta(100, .shape1 = 2, .shape2 = 3, 
#'                           .shape3 = 4, .rate = 5)[["y"]]
#' util_generalized_beta_aic(x)
#'
#' @return
#' The AIC value calculated based on the fitted generalized Beta distribution to 
#' the provided data.
#'
#' @name util_generalized_beta_aic
NULL

#' @export
#' @rdname util_generalized_beta_aic
util_generalized_beta_aic <- function(.x) {
  # Tidyeval
  x <- as.numeric(.x)
  
  # Negative log-likelihood function for generalized Beta distribution
  neg_log_lik_genbeta <- function(par, data) {
    shape1 <- par[1]
    shape2 <- par[2]
    shape3 <- par[3]
    rate <- par[4]
    -sum(actuar::dgenbeta(data, shape1 = shape1, shape2 = shape2, 
                          shape3 = shape3, rate = rate, log = TRUE))
  }
  
  # Initial parameter estimates
  pe <- TidyDensity::util_generalized_beta_param_estimate(x)$parameter_tbl
  shape1 <- pe$shape1
  shape2 <- pe$shape2
  shape3 <- pe$shape3
  rate <- pe$rate
  initial_params <- c(shape1 = shape1, shape2 = shape2, shape3 = shape3, 
                      rate = rate)
  
  # Fit generalized Beta distribution using optim
  fit_genbeta <- stats::optim(
    par = initial_params,
    fn = neg_log_lik_genbeta,
    data = x
  )
  
  # Extract log-likelihood and number of parameters
  logLik_genbeta <- -fit_genbeta$value
  k_genbeta <- 4 # Number of parameters for generalized Beta distribution (shape1, shape2, shape3, and rate)
  
  # Calculate AIC
  AIC_genbeta <- 2 * k_genbeta - 2 * logLik_genbeta
  
  # Return AIC
  return(AIC_genbeta)
}

Example:

> set.seed(123)
> x <- tidy_generalized_beta(100, .shape1 = 2, .shape2 = 3, 
+                           .shape3 = 4, .rate = 5)[["y"]]
> util_generalized_beta_aic(x)
[1] -498.3238
@spsanderson spsanderson self-assigned this May 15, 2024
@spsanderson spsanderson added the enhancement New feature or request label May 15, 2024
@spsanderson spsanderson added this to the TidyDensity 1.4.1 milestone May 15, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Development

No branches or pull requests

1 participant