Skip to content

Commit

Permalink
Fix the same thing again
Browse files Browse the repository at this point in the history
The previous fix didn't work as the colimit wasn't filtered and the
argument using qcqs didn't work... Anyway, the additional lemma added
here should have been added a long time ago, so it is all for the best!
  • Loading branch information
aisejohan committed Jul 20, 2021
1 parent 17ae3bc commit 11a4d72
Showing 1 changed file with 87 additions and 62 deletions.
149 changes: 87 additions & 62 deletions proetale.tex
Expand Up @@ -3746,86 +3746,111 @@ \section{Comparison with the \'etale site}
\epsilon : X_\proetale \longrightarrow X_\etale
$$
This follows from Sites, Proposition \ref{sites-proposition-get-morphism}.
A fundamental fact about this comparison morphism is the following.

\begin{lemma}
\label{lemma-limit-pullback}
Let $X$ be a scheme. Let $Y = \lim Y_i$ be the limit of a directed inverse
system of quasi-compact and quasi-separated objects of $X_\proetale$
with affine transition morphisms. For any sheaf $\mathcal{F}$ on $X_\etale$
we have
\label{lemma-describe-pullback-from-etale}
With notation as above. Let $\mathcal{F}$ be a sheaf on $X_\etale$.
The rule
$$
\epsilon^{-1}\mathcal{F}(Y) = \colim \epsilon^{-1}\mathcal{F}(Y_i)
X_\proetale \longrightarrow \textit{Sets},\quad
(f : Y \to X) \longmapsto \Gamma(Y_\etale, f_\etale^{-1}\mathcal{F})
$$
Moreover, for any object $U$ of $X_\etale$ we have
$\epsilon^{-1}\mathcal{F}(U) = \mathcal{F}(U)$.
is a sheaf and is equal to $\epsilon^{-1}\mathcal{F}$.
Here $f_\etale : Y_\etale \to X_\etale$ is the morphism of
small \'etale sites constructed in
\'Etale Cohomology, Section \ref{etale-cohomology-section-functoriality}.
\end{lemma}

\begin{proof}
Let us denote $u : X_\etale \to X_\proetale$ the inclusion functor.
Let $U$ be an object of $X_\etale$. We have
$\epsilon^{-1}h_U = h_{u(U)}$ by
Sites, Lemma \ref{sites-lemma-pullback-representable-sheaf}.
Thus we have
\begin{align*}
(\epsilon^{-1}h_U)(Y)
& = h_{u(U)}(Y) \\
& = \Mor_X(Y, U) \\
& = \colim \Mor_X(Y_i, U) \\
& = \colim h_{u(U)}(Y_i) \\
& = \colim \epsilon^{-1}h_U(Y_i)
\end{align*}
Here the $3$rd equality holds by Limits, Proposition
\ref{limits-proposition-characterize-locally-finite-presentation}.
Hence the lemma holds for every representable sheaf on $X_\etale$.
Now, let $\mathcal{F}$ be an arbitrary sheaf of sets on $X_\etale$.
By Sites, Lemma \ref{sites-lemma-colimit-representable} we can
choose a diagram $\mathcal{J} \to X_\etale$, $j \mapsto U_j$
such that $\mathcal{F} = \colim_{j \in \mathcal{J}} h_{U_j}$.
We obtain
\begin{align*}
\epsilon^{-1}\mathcal{F}(Y)
& =
(\colim_j \epsilon^{-1}h_{U_j})(Y) \\
& =
\colim_j \epsilon^{-1}h_{U_j}(Y) \\
& =
\colim_j \colim_i \epsilon^{-1}h_{U_j}(Y_i) \\
& =
\colim_i \colim_j \epsilon^{-1}h_{U_j}(Y_i) \\
& =
\colim_i \epsilon^{-1}\mathcal{F}(Y_i)
\end{align*}
The first equality holds because $\epsilon$ is a left adjoint and hence
commutes with colimits. The second equality holds by
Sites, Lemma \ref{sites-lemma-directed-colimits-sections}
and the fact that $Y$ is quasi-compact and quasi-separated
(we omit the verification that this means the object $Y$ of the site
$X_\proetale$ satisfies the assumptions of the fourth part of the cited lemma).
The third equality was shown above. Then fourth equality because colimits
commute with colimits. The fifth equality by
Sites, Lemma \ref{sites-lemma-directed-colimits-sections}
applied to $Y_i$. This finishes the proof.
By Lemma \ref{lemma-recognize-proetale-covering} any pro-\'etale covering
is an fpqc covering. Hence the formula defines a sheaf on $X_\proetale$
by \'Etale Cohomology, Lemma \ref{etale-cohomology-lemma-describe-pullback}.
Let $a : \Sh(X_\etale) \to \Sh(X_\proetale)$ be the functor
sending $\mathcal{F}$ to the sheaf given by the formula in the lemma.
To show that $a = \epsilon^{-1}$ it suffices to show that $a$ is a
left adjoint to $\epsilon_*$.

\medskip\noindent
Let $\mathcal{G}$ be an object of $\Sh(X_\proetale)$.
Recall that $\epsilon_*\mathcal{G}$ is simply given by the restriction of
$\mathcal{G}$ to the full subcategory $X_\etale$.
Let $f : Y \to X$ be an object of $X_\proetale$.
We view $Y_\etale$ as a subcategory of $X_\proetale$.
The restriction maps of the sheaf $\mathcal{G}$ define a map
$$
\epsilon_*\mathcal{G} = \mathcal{G}|_{X_\etale}
\longrightarrow
f_{\etale, *}(\mathcal{G}|_{Y_\etale})
$$
Namely, for $U$ in $X_\etale$ the value of
$f_{\etale, *}(\mathcal{G}|_{Y_\etale})$ on $U$
is $\mathcal{G}(Y \times_X U)$ and there is a restriction
map $\mathcal{G}(U) \to \mathcal{G}(Y \times_X U)$.
By adjunction this determines a map
$$
f_\etale^{-1}(\epsilon_*\mathcal{G}) \to \mathcal{G}|_{Y_\etale}
$$
Putting these together for all $f : Y \to X$ in $X_\proetale$
we obtain a canonical map $a(\epsilon_*\mathcal{G}) \to \mathcal{G}$.

\medskip\noindent
Let $\mathcal{F}$ be an object of $\Sh(X_\etale)$. It is immediately
clear that $\mathcal{F} = \epsilon_*a(\mathcal{F})$.

\medskip\noindent
We claim the maps $\mathcal{F} \to \epsilon_*a(\mathcal{F})$ and
$a(\epsilon_*\mathcal{G}) \to \mathcal{G}$
are the unit and counit of the adjunction (see
Categories, Section \ref{categories-section-adjoint}).
To see this it suffices to show that the corresponding maps
$$
\Mor_{\Sh(X_\proetale)}(a(\mathcal{F}), \mathcal{G}) \to
\Mor_{\Sh(X_\etale)}(\mathcal{F}, \epsilon^{-1}\mathcal{G})
$$
and
$$
\Mor_{\Sh(X_\etale)}(\mathcal{F}, \epsilon^{-1}\mathcal{G}) \to
\Mor_{\Sh(X_\proetale)}(a(\mathcal{F}), \mathcal{G})
$$
are mutually inverse. We omit the detailed verification.
\end{proof}

\begin{lemma}
\label{lemma-fully-faithful}
Let $X$ be a scheme. For every sheaf $\mathcal{F}$ on $X_\etale$
the adjunction map $\mathcal{F} \to \epsilon_*\epsilon^{-1}\mathcal{F}$ is an
isomorphism.
isomorphism, i.e., $\epsilon^{-1}\mathcal{F}(U) = \mathcal{F}(U)$
for $U$ in $X_\etale$.
\end{lemma}

\begin{proof}
Suppose that $U$ is a quasi-compact and quasi-separated scheme \'etale
over $X$. Then
Follows immediately from the description of
$\epsilon^{-1}$ in Lemma \ref{lemma-describe-pullback-from-etale}.
\end{proof}

\begin{lemma}
\label{lemma-limit-pullback}
Let $X$ be a scheme. Let $Y = \lim Y_i$ be the limit of a directed inverse
system of quasi-compact and quasi-separated objects of $X_\proetale$
with affine transition morphisms. For any sheaf $\mathcal{F}$ on $X_\etale$
we have
$$
\epsilon_*\epsilon^{-1}\mathcal{F}(U) =
\epsilon^{-1}\mathcal{F}(U) =
\mathcal{F}(U)
\epsilon^{-1}\mathcal{F}(Y) = \colim \epsilon^{-1}\mathcal{F}(Y_i)
$$
the second equality by (a special case of) Lemma \ref{lemma-limit-pullback}.
Since every object of $X_\etale$
has a covering by quasi-compact and quasi-separated objects we conclude.
Moreover, if $Y_i$ is in $X_\etale$ we have
$\epsilon^{-1}\mathcal{F}(Y) = \colim \mathcal{F}(Y_i)$.
\end{lemma}

\begin{proof}
By the description of $\epsilon^{-1}\mathcal{F}$ in
Lemma \ref{lemma-describe-pullback-from-etale}, the displayed formula
is a special case of \'Etale Cohomology, Theorem
\ref{etale-cohomology-theorem-colimit}.
(When $X$, $Y$, and the $Y_i$ are all affine, see
the easier to parse \'Etale Cohomology, Lemma
\ref{etale-cohomology-lemma-directed-colimit-cohomology}.)
The final statement follows immediately from this
and Lemma \ref{lemma-fully-faithful}.
\end{proof}

\begin{lemma}
Expand Down

0 comments on commit 11a4d72

Please sign in to comment.