Skip to content

Commit

Permalink
Show file tree
Hide file tree
Showing 3 changed files with 48 additions and 44 deletions.
72 changes: 38 additions & 34 deletions derived.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2174,14 +2174,14 @@ \section{Cones and termwise split sequences}

\begin{proof}
Let $h^n : K_1^n \to L_2^{n - 1}$ be a family of morphisms such that
$f_2 \circ a - b \circ f_1 = d \circ h + h \circ d$.
$b \circ f_1 - f_2 \circ a= d \circ h + h \circ d$.
Define $c^n$ by the matrix
$$
c^n =
\left(
\begin{matrix}
a^n & h^{n + 1} \\
0 & b^n
b^n & h^{n + 1} \\
0 & a^{n + 1}
\end{matrix}
\right) :
L_1^n \oplus K_1^{n + 1} \to L_2^n \oplus K_2^{n + 1}
Expand All @@ -2206,19 +2206,24 @@ \section{Cones and termwise split sequences}
\end{lemma}

\begin{proof}
Let $h^n : K^n \to M^{n - 1}$ is such that $g \circ f = dh + hd$.
Let $C(f)^n \to M^n$ be the map
The assumptions say that the diagram
$$
(g^n, h^{n + 1}) : L^n \oplus K^{n + 1} \longrightarrow M^n
\xymatrix{
K^\bullet \ar[r]_f \ar[d] & L^\bullet \ar[d]^g \\
0 \ar[r] & M^\bullet
}
$$
A matrix computation shows this is a map of complexes.
commutes up to homotopy.
Since the cone on $0 \to M^\bullet$ is $M^\bullet$ the
map $C(f)^\bullet \to C(0 \to M^\bullet) = M^\bullet$
of Lemma \ref{lemma-functorial-cone}
is the desired map.
\end{proof}

\noindent
Note that the morphism $C(f)^\bullet \to M^\bullet$
constructed in the proof of
Lemma \ref{lemma-map-from-cone} in general depends on the
chosen homotopy $h$.
Note that the morphism $C(f)^\bullet \to M^\bullet$ constructed in the proof
of Lemma \ref{lemma-map-from-cone} in general depends on the
chosen homotopy.

\begin{definition}
\label{definition-termwise-split-map}
Expand Down Expand Up @@ -2252,15 +2257,14 @@ \section{Cones and termwise split sequences}
Let $h^n : A^n \to D^{n - 1}$ be a collection of morphisms
such that $bf - ga = dh + hd$. Suppose that $\pi^n : B^n \to A^n$
are morphisms splitting the morphisms $f^n$.
Take $b' = b + dh\pi + h\pi d$.
Take $b' = b - dh\pi - h\pi d$.
Suppose $s^n : D^n \to C^n$ are morphisms splitting the morphisms
$g^n : C^n \to D^n$. Take $a' = a + dsh + shd$.
Computations omitted.
\end{proof}


\noindent
The following lemma can be used to replace an morphism of complexes
The following lemma can be used to replace a morphism of complexes
by a morphism where in each degree the map is the injection of a
direct summand.

Expand Down Expand Up @@ -2306,6 +2310,7 @@ \section{Cones and termwise split sequences}
\end{matrix}
\right)
$$
In other words, $\tilde L^\bullet = L^\bullet \oplus C(1_{K^\bullet})$.
Moreover, we set
$$
\tilde \alpha =
Expand Down Expand Up @@ -2395,31 +2400,31 @@ \section{Cones and termwise split sequences}
\end{lemma}

\begin{proof}
Dual to
Lemma \ref{lemma-make-injective}.
Dual to Lemma \ref{lemma-make-injective}.
Take
$$
\tilde K^n = K^n \oplus L^n \oplus L^{n + 1}
\tilde K^n = K^n \oplus L^{n - 1} \oplus L^n
$$
and we define
$$
d^n_{\tilde K} =
\left(
\begin{matrix}
d^n_K & 0 & 0 \\
0 & d^n_L & \text{id}_{L^{n + 1}} \\
0 & 0 & -d^{n + 1}_L
0 & - d^{n - 1}_L & \text{id}_{L^n} \\
0 & 0 & d^n_L
\end{matrix}
\right)
$$
in other words $\tilde K^\bullet = K^\bullet \oplus C(1_{L^\bullet[-1]})$.
Moreover, we set
$$
\tilde \alpha =
\left(
\begin{matrix}
\alpha &
\text{id}_{L^n} &
0
0 &
\text{id}_{L^n}
\end{matrix}
\right)
$$
Expand Down Expand Up @@ -2448,8 +2453,8 @@ \section{Cones and termwise split sequences}
$$
so that $s \circ i = \text{id}_{K^\bullet}$. Finally,
let $h^n : \tilde K^n \to \tilde K^{n - 1}$ be the map
which maps the summand $L^n$ of $\tilde K^n$ via the identity morphism
to the summand $L^n$ of $\tilde K^{n - 1}$. Then it is a trivial matter
which maps the summand $L^{n - 1}$ of $\tilde K^n$ via the identity morphism
to the summand $L^{n - 1}$ of $\tilde K^{n - 1}$. Then it is a trivial matter
to prove that
$$
\text{id}_{\tilde K^\bullet} - i \circ s
Expand Down Expand Up @@ -2481,7 +2486,7 @@ \section{Cones and termwise split sequences}
$$
\delta : C^\bullet \longrightarrow A^\bullet[1]
$$
which in degree $n$ is the map $\pi^{n + 1} \circ d_C^n \circ s^n$.
which in degree $n$ is the map $\pi^{n + 1} \circ d_B^n \circ s^n$.
In other words
$(A^\bullet, B^\bullet, C^\bullet, \alpha, \beta, \delta)$
forms a triangle
Expand Down Expand Up @@ -2674,7 +2679,7 @@ \section{Cones and termwise split sequences}
and we simply define $C(\alpha)^n \to C^n$ via the projection
onto $B^n$ followed by $\beta^n$. This defines
a morphism of complexes because the compositions
$A^{n + 1} \to B^{n + 1} \to B^n \to C^n$ are zero.
$A^{n + 1} \to B^{n + 1} \to C^{n + 1}$ are zero.
To get a homotopy inverse we take
$C^\bullet \to C(\alpha)^\bullet$ given by
$(s^n , -\delta^n)$ in degree $n$. This is a morphism of complexes
Expand All @@ -2696,7 +2701,7 @@ \section{Cones and termwise split sequences}
\right)
$$
To see that this is homotopic to the identity map
use the homotopy $h^n : C(\alpha)^n \to C(\alpha)^{n - 1})$
use the homotopy $h^n : C(\alpha)^n \to C(\alpha)^{n - 1}$
given by the matrix
$$
\left(
Expand All @@ -2718,20 +2723,19 @@ \section{Cones and termwise split sequences}
-
\left(
\begin{matrix}
s^n &
s^n \\
-\delta^n
\end{matrix}
\right)
\left(
\begin{matrix}
\beta^n \\
0
\beta^n & 0
\end{matrix}
\right)
=
\left(
\begin{matrix}
d & \alpha^{n + 1} \\
d & \alpha^n \\
0 & -d
\end{matrix}
\right)
Expand Down Expand Up @@ -2810,13 +2814,13 @@ \section{Cones and termwise split sequences}
The case $n = 1$ is without content.
Lemma \ref{lemma-make-injective} is the case $n = 2$.
Suppose we have constructed the diagram
except for $B_n$. Apply Lemma \ref{lemma-make-injective} to
the composition $B_{n - 1} \to A_{n - 1} \to A_n$.
The result is a factorization $B_{n - 1} \to B_n \to A_n$
except for $B_n^\bullet$. Apply Lemma \ref{lemma-make-injective} to
the composition $B_{n - 1}^\bullet \to A_{n - 1}^\bullet \to A_n^\bullet$.
The result is a factorization
$B_{n - 1}^\bullet \to B_n^\bullet \to A_n^\bullet$
as desired.
\end{proof}


\begin{lemma}
\label{lemma-rotate-triangle}
Let $\mathcal{A}$ be an additive category. Let
Expand Down
11 changes: 6 additions & 5 deletions dga.tex
Original file line number Diff line number Diff line change
Expand Up @@ -452,7 +452,7 @@ \section{Admissible short exact sequences}
Let $h : K \to N$ be a homotopy between $bf$ and $ga$, i.e.,
$bf - ga = \text{d}h + h\text{d}$. Suppose that $\pi : L \to K$
is a graded $A$-module map left inverse to $f$. Take
$b' = b + \text{d}h\pi + h\pi \text{d}$.
$b' = b - \text{d}h\pi - h\pi \text{d}$.
Suppose $s : N \to M$ is a graded $A$-module map right inverse to $g$.
Take $a' = a + \text{d}sh + sh\text{d}$.
Computations omitted.
Expand Down Expand Up @@ -1151,7 +1151,7 @@ \section{Cones}
Proof of (1). We have $C(\alpha) = L \oplus K$ and we simply define
$C(\alpha) \to M$ via the projection onto $L$ followed by $\beta$.
This defines a morphism of differential graded modules because the
compositions $K^{n + 1} \to L^{n + 1} \to L^n \to M^n$ are zero.
compositions $K^{n + 1} \to L^{n + 1} \to M^{n + 1}$ are zero.
Choose splittings $s : M \to L$ and $\pi : L \to K$ with
$\text{Ker}(\pi) = \text{Im}(s)$ and set
$\delta = \pi \circ \text{d}_L \circ s$ as usual.
Expand Down Expand Up @@ -2321,6 +2321,7 @@ \section{Differential graded categories}
as a graded $\mathbf{Z}$-module where the right hand side is defined
in Example \ref{example-graded-category-graded-objects}.
In other words, the $n$th graded piece is
the abelian group of homogeneous morphism of degree $n$ of graded objects
$$
\Hom^n(A^\bullet, B^\bullet) =
\Hom_{\text{Gr}(\mathcal{B})}(A^\bullet, B^\bullet[n]) =
Expand Down Expand Up @@ -2435,12 +2436,12 @@ \section{Differential graded categories}
graded $A$-modules $L$ and $M$ we set
$$
\Hom_{\text{Mod}^{dg}_{(A, \text{d})}}(L, M) =
\Hom_{\text{Mod}^{gr}_A}(L, M)
\Hom_{\text{Mod}^{gr}_A}(L, M) = \bigoplus \Hom^n(L, M)
$$
as a graded $R$-module where the right hand side is defined as in
Example \ref{example-gm-gr-cat}. In other words, the $n$th graded piece
is the set of right $A$-module maps homogeneous of degree $n$.
For an element $f \in \Hom^n(L, M)$ we set
$\Hom^n(L, M)$ is the $R$-module of right $A$-module maps homogeneous
of degree $n$. For an element $f \in \Hom^n(L, M)$ we set
$$
\text{d}(f) = \text{d}_M \circ f - (-1)^n f \circ \text{d}_L
$$
Expand Down
9 changes: 4 additions & 5 deletions homology.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2914,13 +2914,11 @@ \section{Homotopy and the shift functor}
Omitted.
\end{proof}



\begin{definition}
\label{definition-shift-cochain}
Let $\mathcal{A}$ be an additive category.
Let $A^\bullet$ be a cochain complex
with boundary maps $d_A^n : A^n \to A^{n - 1}$.
with boundary maps $d_A^n : A^n \to A^{n + 1}$.
For any $k \in \mathbf{Z}$ we define the
{\it $k$-shifted cochain complex $A[k]^\bullet$}
as follows:
Expand Down Expand Up @@ -3055,8 +3053,9 @@ \section{Homotopy and the shift functor}
\begin{lemma}
\label{lemma-ses-termwise-split-homotopy-cochain}
Notation and assumptions as in
Lemma \ref{lemma-ses-termwise-split-cochain} above.
Let $\alpha : A^\bullet$, $\beta : B^\bullet \to C^n$ be the given
Lemma \ref{lemma-ses-termwise-split-cochain}.
Let $\alpha : A^\bullet \to B^\bullet$,
$\beta : B^\bullet \to C^\bullet$ be the given
morphisms of complexes.
Suppose $(s')^n : C^n \to B^n$ and $(\pi')^n : B^n \to A^n$
is a second choice of splittings.
Expand Down

0 comments on commit 144081a

Please sign in to comment.