Skip to content

Commit

Permalink
Simplification and complication
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Sep 1, 2019
1 parent f0184a3 commit 1626424
Showing 1 changed file with 28 additions and 20 deletions.
48 changes: 28 additions & 20 deletions crystalline.tex
Expand Up @@ -380,19 +380,8 @@ \section{Divided power envelope}
\end{lemma}

\begin{proof}
Set $D = D_B(J)$ and denote $\bar J \subset D$ its divided power ideal
with divided power structure $\bar\gamma$. The universal property of
$D$ produces a homomorphism of divided power rings $D \to D_{B'}(J')$,
whence a map as in the lemma. It suffices to show that
there exist divided powers on the image of
$D \otimes_B I' + \bar J \otimes_B B' \to D \otimes_B B'$
compatible with $\bar \gamma$ and $\gamma'$ since then
the universal property of $D_{B'}(J')$ will produce a map
$D_{B'}(J') \to D \otimes_B B'$ inverse to the one in the lemma.

\medskip\noindent
Choose elements $f_t \in J$ which generate $J/I$. Set
$\mathcal{R} = \{(r_0, r_t) \in I \oplus \bigoplus\nolimits_{t \in T} B
Set $D = D_{B, \gamma}(J)$. Choose elements $f_t \in J$ which generate $J/I$.
Set $\mathcal{R} = \{(r_0, r_t) \in I \oplus \bigoplus\nolimits_{t \in T} B
\mid \sum r_t f_t = r_0 \text{ in }B\}$ as in the proof of
Lemma \ref{lemma-describe-divided-power-envelope}. This lemma shows that
$$
Expand Down Expand Up @@ -428,21 +417,40 @@ \section{Divided power envelope}
$r_{jt} \in B$ and $c_j \in B'$, $j = 1, \ldots, m$ such
that
$$
r_{j0} = \sum r_{jt} f_t \in I \text{ for } j = 1, \ldots, m,
\quad\text{and}\quad
r'_t = \sum c_j r_{jt}.
r_{j0} = \sum\nolimits_t r_{jt} f_t \in I \text{ for } j = 1, \ldots, m
$$
and
$$
Note that this also implies that $r'_0 = \sum c_j r_{j0}$.
i'_t = r'_t - \sum\nolimits_j c_j r_{jt} \in I' \text{ for all }t
$$
Note that this also implies that
$r'_0 = \sum_t i'_t f_t + \sum_j c_j r_{j0}$.
Then we have
\begin{align*}
\delta'_n(\sum r'_t x_t - r'_0)
\delta'_n(\sum\nolimits_t r'_t x_t - r'_0)
& =
\delta'_n(\sum c_j (\sum r_{jt} x_t - r_{j0})) \\
\delta'_n(
\sum\nolimits_t i'_t x_t +
\sum\nolimits_{t, j} c_j r_{jt} x_t -
\sum\nolimits_t i'_t f_t -
\sum\nolimits_j c_j r_{j0}) \\
& =
\delta'_n(
\sum\nolimits_t i'_t(x_t - f_t) +
\sum\nolimits_j c_j (\sum\nolimits_t r_{jt} x_t - r_{j0}))
\end{align*}
Since $\delta_n(a + b) = \sum_{m = 0, \ldots, n} \delta_m(a) \delta_{n - m}(b)$
and since $\delta_m(\sum i'_t(x_t - f_t))$ is in the ideal
generated by $x_t - f_t \in K'$ for $m > 0$, it suffices to prove that
$\delta_n(\sum c_j (\sum r_{jt} x_t - r_{j0}))$ is in $K'$.
For this we use
$$
\delta_n(\sum\nolimits_j c_j (\sum\nolimits_t r_{jt} x_t - r_{j0}))
=
\sum c_1^{n_1} \ldots c_m^{n_m}
\delta_{n_1}(\sum r_{1t} x_t - r_{10}) \ldots
\delta_{n_m}(\sum r_{mt} x_t - r_{m0})
\end{align*}
$$
where the sum is over $n_1 + \ldots + n_m = n$. This proves what we want.
\end{proof}

Expand Down

0 comments on commit 1626424

Please sign in to comment.