Skip to content

Commit

Permalink
Show file tree
Hide file tree
Showing 3 changed files with 5 additions and 5 deletions.
2 changes: 1 addition & 1 deletion algebra.tex
Expand Up @@ -8168,7 +8168,7 @@ \section{Flat modules and flat ring maps}
\begin{proof}
Let $R^{(I)} \to N$ be a surjection from a free module
onto $N$ with kernel $K$. The result follows
by a simple diagram chase from the following diagram
from the snake lemma applied to the following diagram
$$
\begin{matrix}
& & 0 & & 0 & & 0 & & \\
Expand Down
2 changes: 1 addition & 1 deletion cohomology.tex
Expand Up @@ -925,7 +925,7 @@ \section{The {\v C}ech complex and {\v C}ech cohomology}
This is an abelian group. For
$s \in \check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F})$ we denote
$s_{i_0\ldots i_p}$ its value in $\mathcal{F}(U_{i_0\ldots i_p})$.
Note that if $s \in \check{\mathcal{C}}^2(\mathcal{U}, \mathcal{F})$
Note that if $s \in \check{\mathcal{C}}^1(\mathcal{U}, \mathcal{F})$
and $i, j \in I$ then $s_{ij}$ and $s_{ji}$ are both elements
of $\mathcal{F}(U_i \cap U_j)$ but there is no imposed
relation between $s_{ij}$ and $s_{ji}$. In other words, we are {\it not}
Expand Down
6 changes: 3 additions & 3 deletions modules.tex
Expand Up @@ -2434,7 +2434,7 @@ \section{Flat modules}
$\mathcal{O}_{X, x}$-module. Note that
$$
M \otimes_{\mathcal{O}_{X, x}} \mathcal{F}_x =
\left(i_{x, *} M \otimes_{\mathcal{O}_X} \mathcal{F})\right)_x
\left(i_{x, *} M \otimes_{\mathcal{O}_X} \mathcal{F}\right)_x
$$
again by
Lemma \ref{lemma-stalk-tensor-product}.
Expand Down Expand Up @@ -2481,7 +2481,7 @@ \section{Flat modules}
\end{lemma}

\begin{proof}
The stalks of $j_!\mathcal{O}_U$ are either zero of equal
The stalks of $j_{U!}\mathcal{O}_U$ are either zero or equal
to $\mathcal{O}_{X, x}$. Apply
Lemma \ref{lemma-flat-stalks-flat}.
\end{proof}
Expand Down Expand Up @@ -3899,7 +3899,7 @@ \section{Modules of differentials}
has a natural structure of an $\mathcal{O}_X$-module.
A section $s : \mathcal{O}_X \to \mathcal{A}$ of $\pi$
is a $f^{-1}\mathcal{O}_S$-algebra map such that $\pi \circ s = \text{id}$.
Given any section $s : \mathcal{O}_X \to \mathcal{I}$
Given any section $s : \mathcal{O}_X \to \mathcal{A}$
of $\pi$ and any $S$-derivation $D : \mathcal{O}_X \to \mathcal{I}$
the map
$$
Expand Down

0 comments on commit 1c716d9

Please sign in to comment.