Skip to content

Commit

Permalink
Upgrade to results from lemmas to propositions
Browse files Browse the repository at this point in the history
Namely, Grothendieck's result on vanishing of cohomology on Noetherian
topological space and Grothendieck's result on proper pushforward of
coherent sheaves
  • Loading branch information
aisejohan committed Apr 21, 2014
1 parent 03e12f2 commit 1d46c85
Show file tree
Hide file tree
Showing 9 changed files with 37 additions and 34 deletions.
3 changes: 2 additions & 1 deletion chow.tex
Expand Up @@ -3545,7 +3545,8 @@ \section{Proper pushforward}
\end{enumerate}
Note that the statement makes sense since $f_*\mathcal{F}$ and
$f_*\mathcal{O}_Z$ are coherent $\mathcal{O}_Y$-modules by
Cohomology of Schemes, Lemma \ref{coherent-lemma-proper-pushforward-coherent}.
Cohomology of Schemes, Proposition
\ref{coherent-proposition-proper-pushforward-coherent}.
\end{lemma}

\begin{proof}
Expand Down
32 changes: 16 additions & 16 deletions coherent.tex
Expand Up @@ -3802,14 +3802,14 @@ \section{Higher direct images of coherent sheaves}
\noindent
Here is the general statement.

\begin{lemma}
\label{lemma-proper-pushforward-coherent}
\begin{proposition}
\label{proposition-proper-pushforward-coherent}
Let $S$ be a locally Noetherian scheme.
Let $f : X \to S$ be a proper morphism.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module.
Then $R^if_*\mathcal{F}$ is a coherent $\mathcal{O}_S$-module
for all $i \geq 0$.
\end{lemma}
\end{proposition}

\begin{proof}
Since the problem is local on $S$ we may assume that $S$ is
Expand Down Expand Up @@ -3883,10 +3883,10 @@ \section{Higher direct images of coherent sheaves}
as in the statement of Chow's lemma. Also, let $U \subset Z$ be
the dense open subscheme such that $\pi^{-1}(U) \to U$ is an isomorphism.
By the discussion in Remark \ref{remark-chow-Noetherian} we see that
$i' = (i, \pi) : \mathbf{P}^n_S \times_S Z' = \mathbf{P}^n_Z$ is
$i' = (i, \pi) : Z' \to \mathbf{P}^n_Z$ is
a closed immersion. Hence
$$
\mathcal{L} = i^*\mathcal{O}_{\mathbf{P}^n_X}(1) \cong
\mathcal{L} = i^*\mathcal{O}_{\mathbf{P}^n_S}(1) \cong
(i')^*\mathcal{O}_{\mathbf{P}^n_Z}(1)
$$
is $g'$-relatively ample and $\pi$-relatively ample (for example by
Expand Down Expand Up @@ -3932,8 +3932,8 @@ \section{Higher direct images of coherent sheaves}
$\mathcal{F} = i_*\mathcal{G}$ for some coherent module $\mathcal{G}$
on $Z$ (Lemma \ref{lemma-coherent-support-closed}).
Denoting $g : Z \to S$ the composition $f \circ i$ we see that
$R^pg_*\mathcal{G}$
is coherent on $S$ by Lemma \ref{lemma-proper-pushforward-coherent}.
$R^pg_*\mathcal{G}$ is coherent on $S$ by
Proposition \ref{proposition-proper-pushforward-coherent}.
On the other hand, $R^qi_*\mathcal{G} = 0$ for $q > 0$
(Lemma \ref{lemma-finite-pushforward-coherent}).
By Cohomology, Lemma \ref{cohomology-lemma-relative-Leray}
Expand All @@ -3950,7 +3950,8 @@ \section{Higher direct images of coherent sheaves}
\end{lemma}

\begin{proof}
This is just the affine case of Lemma \ref{lemma-proper-pushforward-coherent}.
This is just the affine case of
Proposition \ref{proposition-proper-pushforward-coherent}.
Namely, by Lemmas \ref{lemma-quasi-coherence-higher-direct-images} and
\ref{lemma-quasi-coherence-higher-direct-images-application} we know that
$R^if_*\mathcal{F}$ is the quasi-coherent sheaf associated
Expand Down Expand Up @@ -4488,7 +4489,7 @@ \section{The theorem on formal functions}
$p > 0$. Hence we see that $(R^pf_*\mathcal{F})_y^\wedge = 0$
by Lemma \ref{lemma-formal-functions-stalk}.
Note that $R^pf_*\mathcal{F}$ is coherent by
Lemma \ref{lemma-proper-pushforward-coherent} and
Proposition \ref{proposition-proper-pushforward-coherent} and
hence $R^pf_*\mathcal{F}_y$ is a finite
$\mathcal{O}_{Y, y}$-module.
By Algebra, Lemma \ref{algebra-lemma-completion-tensor}
Expand Down Expand Up @@ -4518,11 +4519,11 @@ \section{The theorem on formal functions}
Moreover, the underlying topological space of each infinitesimal
neighbourhood $X_n$ is the same as that of $X_y$.
Hence $H^p(X_n, \mathcal{F}_n) = 0$ for all $p > d$ by
Cohomology, Lemma \ref{cohomology-lemma-vanishing-Noetherian}.
Cohomology, Proposition \ref{cohomology-proposition-vanishing-Noetherian}.
Hence we see that $(R^pf_*\mathcal{F})_y^\wedge = 0$
by Lemma \ref{lemma-formal-functions-stalk} for $p > d$.
Note that $R^pf_*\mathcal{F}$ is coherent by
Lemma \ref{lemma-proper-pushforward-coherent} and
Proposition \ref{proposition-proper-pushforward-coherent} and
hence $R^pf_*\mathcal{F}_y$ is a finite
$\mathcal{O}_{Y, y}$-module.
By Algebra, Lemma \ref{algebra-lemma-completion-tensor}
Expand Down Expand Up @@ -5363,7 +5364,7 @@ \section{Grothendieck's existence theorem, II}
\begin{proof}
Since $f$ is a proper morphism we see that $f_*\mathcal{F}$
is a coherent $\mathcal{O}_Y$-module
(Lemma \ref{lemma-proper-pushforward-coherent}).
(Proposition \ref{proposition-proper-pushforward-coherent}).
Thus the statement of the lemma makes sense.
Consider the compositions
$$
Expand Down Expand Up @@ -5503,7 +5504,7 @@ \section{Grothendieck's existence theorem, II}
(Lemma \ref{lemma-existence-projective})
there exists a coherent module $\mathcal{F}'$ on $X'$ such
that $(\mathcal{F}')^\wedge \cong (f^*\mathcal{F}_n)$. By
Lemma \ref{lemma-proper-pushforward-coherent}
Proposition \ref{proposition-proper-pushforward-coherent}
the $\mathcal{O}_X$-module $\mathcal{H} = f_*\mathcal{F}'$ is coherent
and by Lemma \ref{lemma-inverse-systems-push-pull}
there exists a morphism $(\mathcal{F}_n) \to \mathcal{H}^\wedge$
Expand Down Expand Up @@ -5634,9 +5635,8 @@ \section{Grothendieck's existence theorem, II}

\medskip\noindent
Let $\mathcal{K}$ be the quasi-coherent sheaf of ideals cutting
out the reduced complement $X \setminus U$.
By
Lemma \ref{lemma-proper-pushforward-coherent}
out the reduced complement $X \setminus U$. By
Proposition \ref{proposition-proper-pushforward-coherent}
the $\mathcal{O}_X$-module $\mathcal{H} = f_*\mathcal{F}'$ is coherent
and by Lemma \ref{lemma-inverse-systems-push-pull}
there exists a morphism $\alpha : (\mathcal{F}_n) \to \mathcal{H}^\wedge$
Expand Down
11 changes: 6 additions & 5 deletions cohomology.tex
Expand Up @@ -3172,7 +3172,7 @@ \section{Vanishing on Noetherian topological spaces}

\noindent
The aim is to prove a theorem of Grothendieck namely
Lemma \ref{lemma-vanishing-Noetherian}. See \cite{Tohoku}.
Proposition \ref{proposition-vanishing-Noetherian}. See \cite{Tohoku}.

\begin{lemma}
\label{lemma-cohomology-and-closed-immersions}
Expand Down Expand Up @@ -3397,16 +3397,16 @@ \section{Vanishing on Noetherian topological spaces}
hence we get the lemma.
\end{proof}

\begin{lemma}
\label{lemma-vanishing-Noetherian}
\begin{proposition}[Grothendieck]
\label{proposition-vanishing-Noetherian}
\begin{reference}
\cite[Theorem 3.6.5]{Tohoku}.
\end{reference}
Let $X$ be a Noetherian topological space.
If $\dim(X) \leq d$, then $H^p(X, \mathcal{F}) = 0$
for all $p > d$ and any abelian sheaf $\mathcal{F}$
on $X$.
\end{lemma}
\end{proposition}

\begin{proof}
We prove this lemma by induction on $d$.
Expand Down Expand Up @@ -3659,7 +3659,8 @@ \section{Cohomology on spectral spaces}

\noindent
The following result on cohomological vanishing
improves Grothendieck's result (Lemma \ref{lemma-vanishing-Noetherian})
improves Grothendieck's result
(Proposition \ref{proposition-vanishing-Noetherian})
and can be found in \cite{Scheiderer}.

\begin{proposition}
Expand Down
3 changes: 2 additions & 1 deletion crystalline.tex
Expand Up @@ -4698,7 +4698,8 @@ \section{Some further results}
of dimension $e$ over $S$
(see Lemma \ref{lemma-compute-cohomology-crystal-smooth}).
These de Rham complexes are zero in all degrees $>e$. Hence (1)
follows from Cohomology, Lemma \ref{cohomology-lemma-vanishing-Noetherian}.
follows from Cohomology, Proposition
\ref{cohomology-proposition-vanishing-Noetherian}.
In case (2) we use the alternating {\v C}ech complex (see
Remark \ref{remark-alternating-cech-complex}) to reduce to the case
$X$ affine. In the affine case we prove the result using the de Rham complex
Expand Down
7 changes: 3 additions & 4 deletions etale-cohomology.tex
Expand Up @@ -7551,9 +7551,7 @@ \section{Vanishing of finite higher direct images}
Algebra, Lemma \ref{algebra-lemma-ring-with-only-minimal-primes}.
Thus the higher cohomology groups of an abelian sheaf on the topological
space $S$ (i.e., Zariski cohomology) is trivial, see
Topology, Lemma \ref{topology-lemma-profinite-refine-open-covering}
and
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-w-contractible}.
Cohomology, Lemma \ref{cohomology-lemma-vanishing-for-profinite}.
The local rings are strictly henselian by
Algebra, Lemma \ref{algebra-lemma-local-dimension-zero-henselian}.
Thus \'etale cohomology of $S$ is computed by Zariski cohomology
Expand Down Expand Up @@ -8930,7 +8928,8 @@ \section{The Artin-Schreier sequence}
be a coherent sheaf of ideals on $Z$. To finish the proof have to show
that $H^d(X, i_*\mathcal{I}) = H^d(Z, \mathcal{I})$ is finite dimensional.
If $\dim(Z) < d$, then the result holds because the cohomology group
will be zero (Cohomology, Lemma \ref{cohomology-lemma-vanishing-Noetherian}).
will be zero (Cohomology, Proposition
\ref{cohomology-proposition-vanishing-Noetherian}).
In this way we reduce to the situation discussed in the following paragraph.

\medskip\noindent
Expand Down
3 changes: 2 additions & 1 deletion more-morphisms.tex
Expand Up @@ -9350,7 +9350,8 @@ \section{Stein factorization}
and finite type
(Morphisms, Lemma \ref{morphisms-lemma-permanence-finite-type}).
Hence $f'$ is proper. By
Cohomology of Schemes, Lemma \ref{coherent-lemma-proper-pushforward-coherent}
Cohomology of Schemes, Proposition
\ref{coherent-proposition-proper-pushforward-coherent}
we see that $f_*\mathcal{O}_X$ is a coherent $\mathcal{O}_S$-module.
Hence we see that $\pi$ is finite, i.e., (2) holds.

Expand Down
2 changes: 1 addition & 1 deletion perfect.tex
Expand Up @@ -2623,7 +2623,7 @@ \section{Compact and perfect objects}

\noindent
Let $X$ be a Noetherian scheme of finite dimension. By
Cohomology, Lemma \ref{cohomology-lemma-vanishing-Noetherian}
Cohomology, Proposition \ref{cohomology-proposition-vanishing-Noetherian}
and
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-when-jshriek-compact}
the sheaves of modules $j_!\mathcal{O}_U$ are compact objects
Expand Down
4 changes: 2 additions & 2 deletions tags/tags
Expand Up @@ -3499,7 +3499,7 @@
02O2,coherent-section-chows-lemma
02O3,coherent-section-proper-pushforward
02O4,coherent-lemma-locally-projective-pushforward
02O5,coherent-lemma-proper-pushforward-coherent
02O5,coherent-proposition-proper-pushforward-coherent
02O6,coherent-lemma-proper-over-affine-cohomology-finite
02O7,coherent-section-theorem-formal-functions
02O8,coherent-lemma-cohomology-powers-ideal-times-F
Expand Down Expand Up @@ -3745,7 +3745,7 @@
02UW,cohomology-lemma-irreducible-constant-cohomology-zero
02UX,cohomology-lemma-vanishing-generated-one-section
02UY,cohomology-lemma-subsheaf-irreducible
02UZ,cohomology-lemma-vanishing-Noetherian
02UZ,cohomology-proposition-vanishing-Noetherian
02V0,schemes-lemma-composition-immersion
02V1,morphisms-lemma-composition-universally-injective
02V2,morphisms-lemma-composition-open
Expand Down
6 changes: 3 additions & 3 deletions varieties.tex
Expand Up @@ -2631,8 +2631,8 @@ \section{Types of varieties}
\end{lemma}

\begin{proof}
By
Cohomology of Schemes, Lemma \ref{coherent-lemma-proper-pushforward-coherent}
By Cohomology of Schemes, Proposition
\ref{coherent-proposition-proper-pushforward-coherent}
we see that $\Gamma(X, \mathcal{O}_X)$ is a finite dimensional
$k$-vector space. It is also a $k$-algebra without zero-divisors.
Hence it is a field, see
Expand Down Expand Up @@ -4351,7 +4351,7 @@ \section{One dimensional Noetherian schemes}
$$
of sheaves of abelian groups on $X$. Since $\dim(X) \leq 1$ we see that
$H^2(X, \mathcal{F}) = 0$ for any abelian sheaf $\mathcal{F}$, see
Cohomology, Lemma \ref{cohomology-lemma-vanishing-Noetherian}.
Cohomology, Proposition \ref{cohomology-proposition-vanishing-Noetherian}.
Hence the map $H^1(X, \mathcal{O}^*_X) \to H^1(Z, \mathcal{O}_Z^*)$
is surjective. This proves the lemma by
Cohomology, Lemma \ref{cohomology-lemma-h1-invertible}.
Expand Down

0 comments on commit 1d46c85

Please sign in to comment.