Skip to content

Commit

Permalink
Add a proof to morphisms
Browse files Browse the repository at this point in the history
Thanks to  Elías Guisado who submitted this + edits from me
  • Loading branch information
aisejohan committed Jul 3, 2024
1 parent 2c3bdd5 commit 2cd8fe5
Showing 1 changed file with 93 additions and 1 deletion.
94 changes: 93 additions & 1 deletion morphisms.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1809,6 +1809,54 @@ \section{Affine morphisms}
Constructions, Lemma \ref{constructions-lemma-spec-properties} part (2).
\end{proof}

\begin{lemma}
\label{lemma-quasi-coherence-scalar-restriction}
Let $S$ be a scheme and let $\mathcal{A}$ be a quasi-coherent
$\mathcal{O}_S$-algebra. An $\mathcal{A}$-module is
quasi-coherent as an $\mathcal{O}_S$-module if and only if
it is quasi-coherent as an $\mathcal{A}$-module.
\end{lemma}

\begin{proof}
Let $\mathcal{F}$ be an $\mathcal{A}$-module.
If $\mathcal{F}$ is quasi-coherent as an $\mathcal{A}$-module, then
for every $s \in S$ there exists an open neighbourhood $U$ of $s$
and an exact sequence
$$
\bigoplus\nolimits_J\mathcal{A}|_U\to
\bigoplus\nolimits_I\mathcal{A}|_U\to
\mathcal{F}|_U
$$
of $\mathcal{A}|_U$-modules.
Then this is also an exact sequence of $\mathcal{O}_U$-modules.
Hence $\mathcal{F}|_U$ is quasi-coherent as the cokernel of a morphism
of quasi-coherent $\mathcal{O}_U$-modules on a scheme. It follows
that $\mathcal{F}$ is quasi-coherent as an $\mathcal{O}_X$-module.

\medskip\noindent
Conversely, assume $\mathcal{F}$ is quasi-coherent as an $\mathcal{O}_X$-module.
Pick an open affine $\Spec(R) = U \subset S$. We have isomorphisms of
$\mathcal{O}_U$-modules $\mathcal{A}|_U \cong \widetilde{A}$ and
$\mathcal{F}|_U \cong \widetilde{M}$, for some $R$-algebra $A$
and some $R$-module $M$. The $\mathcal{A}$-module structure on $\mathcal{F}$
translates into an $A$-module structure on $M$ compatible with the
given $R$-module structure (details omitted). Choose an exact sequence
$$
\bigoplus\nolimits_J A \to
\bigoplus\nolimits_I A \to
M \to 0
$$
of $A$-modules. Since the functor $\widetilde{\ }$ is exact, this
produces an exact sequence
$$
\bigoplus\nolimits_J \widetilde{A}\to
\bigoplus\nolimits_I \widetilde{A}\to
\widetilde{M} \to 0
$$
of $\widetilde{A}$-modules. This means that
$\mathcal{F}$ is quasi-coherent as an $\mathcal{A}$-module.
\end{proof}

\begin{lemma}
\label{lemma-affine-equivalence-modules}
Let $f : X \to S$ be an affine morphism of schemes.
Expand Down Expand Up @@ -1836,7 +1884,51 @@ \section{Affine morphisms}
\end{lemma}

\begin{proof}
Omitted.
The final statement is Lemma \ref{lemma-quasi-coherence-scalar-restriction}.
By Lemma \ref{lemma-affine-separated} and
Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}
the pushforward $f_*\mathcal{F}$ of a quasi-coherent $\mathcal{O}_X$-module
$\mathcal{F}$
is a quasi-coherent $\mathcal{O}_S$-module. Hence a functor as in
the statement of the lemma.

\medskip\noindent
We will construct an quasi-inverse $h$ to this functor. Let $\mathcal{G}$
be a quasi-coherent $\mathcal{A}$-module. Then we set
$$
h(\mathcal{G}) = f^*\mathcal{G} \otimes_{f^*\mathcal{A}} \mathcal{O}_X =
f^*\mathcal{G} \otimes_{f^*f_*\mathcal{O}_X} \mathcal{O}_X
$$
Elucidation: the pullback $f^*\mathcal{A} = f^*f_*\mathcal{O}_X$
is an $\mathcal{O}_X$-algebra, the adjunction map
$f^*f_*\mathcal{O}_X \to \mathcal{O}_X$ is an algebra homomorphism, and
the pullback $f^*\mathcal{G}$ is an $f^*\mathcal{A}$-module. Observe that
$h(\mathcal{G})$ is quasi-coherent as quasi-coherence is preserved by
pullbacks and change of rings. Observe that there is a functorial map
$$
h(f_*\mathcal{F}) =
f^*f_*\mathcal{F} \otimes_{f^*f_*\mathcal{O}_X} \mathcal{O}_X \to \mathcal{F}
$$
coming from the adjunction map $f^*f_*\mathcal{F} \to \mathcal{F}$ and
a functorial map
$$
\mathcal{G} \to f_*h(\mathcal{G}) \quad\text{adjoint to the map}\quad
f^*\mathcal{G} \to f^*\mathcal{G} \otimes_{f^*f_*\mathcal{O}_X} \mathcal{O}_X
$$
which sends a local section $s$ of $f^*\mathcal{F}$ to $s \otimes 1$.
To finish the proof it suffices to show that these maps are isomorphisms
for $\mathcal{F}$ and $\mathcal{G}$ as above. This may be checked on the
members of an affine covering, i.e., when $X$ and $S$ are affine.

\medskip\noindent
The key algebra observation which makes this work is the
following: Let $R \to A$ be a ring map. Let $N$ be an $A$-module. Then
$$
(N \otimes_R A) \otimes_{(A \otimes_R A)} A = N
$$
Namely, the left hand side of this equality is the effect of applying
$h$ to the quasi-coherent $\widetilde{A}$-module $\widetilde{N}$ on $\Spec(R)$.
We omit the details.
\end{proof}

\begin{lemma}
Expand Down

0 comments on commit 2cd8fe5

Please sign in to comment.