Skip to content

Commit

Permalink
Content ideal of element of flat module
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Oct 24, 2014
1 parent e27b49b commit 2f4d7fc
Showing 1 changed file with 81 additions and 0 deletions.
81 changes: 81 additions & 0 deletions more-algebra.tex
Expand Up @@ -3216,6 +3216,87 @@ \section{Torsion and flatness}



\section{Content ideals}
\label{section-content}

\noindent
The definition may not be what you expect.

\begin{definition}
\label{definition-content-ideal}
Let $A$ be a ring. Let $M$ be a flat $A$-module. Let $x \in M$.
If the set of ideals $I$ in $A$ such that $x \in IM$ has a
smallest element, we call it the {\it content ideal of $x$}.
\end{definition}

\noindent
Note that since $M$ is flat over $A$, for a pair of ideals $I, I'$
of $A$ we have $IM \cap I'M = (I \cap I')M$
as can be seen by tensoring the exact sequence
$0 \to I \cap I' \to I \oplus I' \to I + I' \to 0$ by $M$.

\begin{lemma}
\label{lemma-content-finitely-generated}
Let $A$ be a ring. Let $M$ be a flat $A$-module. Let $x \in M$.
The content ideal of $x$, if it exists, is finitely generated.
\end{lemma}

\begin{proof}
Say $x \in IM$. Then we can write $x = \sum_{i = 1, \ldots, n} f_i x_i$ with
$f_i \in I$ and $x_i \in M$. Hence $x \in I'M$ with
$I' = (f_1, \ldots, f_n)$.
\end{proof}

\begin{lemma}
\label{lemma-equal-content}
Let $(A, \mathfrak m)$ be a local ring. Let $u : M \to N$ be a map of flat
$A$-modules such that $\overline{u} : M/\mathfrak m M \to N/\mathfrak m N$
is injective. If $x \in M$ has content ideal $I$, then $u(x)$ has content
ideal $I$ as well.
\end{lemma}

\begin{proof}
It is clear that $u(x) \in IN$. If $u(x) \in I'N$, then
$u(x) \in (I' \cap I)N$, see discussion following
Definition \ref{definition-content-ideal}. Hence it suffices to
show: if $x \in I'N$ and $I' \subset I$, $I' \not = I$, then
$u(x) \not \in I'N$. Since $I/I'$ is a nonzero finite $A$-module
(Lemma \ref{lemma-content-finitely-generated}) there is a nonzero map
$\chi : I/I' \to A/\mathfrak m$ of $A$-modules
by Nakayama's lemma (Algebra, Lemma \ref{lemma-NAK}).
Since $I$ is the content ideal of $x$ we see that
$x \not \in I''M$ where $I'' = \Ker(\chi)$.
Hence $x$ is not in the kernel of the map
$$
IM = I \otimes_A M \xrightarrow{\chi \otimes 1}
A/\mathfrak m \otimes M \cong M/\mathfrak m M
$$
Applying our hypothesis on $\overline{u}$ we conclude that
$u(x)$ does not map to zero under the map
$$
IN = I \otimes_A N \xrightarrow{\chi \otimes 1}
A/\mathfrak m \otimes N \cong N/\mathfrak m N
$$
and we conclude.
\end{proof}

\begin{lemma}
\label{lemma-content-exists-flat-Mittag-Leffler}
Let $A$ be a ring. Let $M$ be a flat Mittag-Leffler module.
Then every element of $M$ has a content ideal.
\end{lemma}

\begin{proof}
This is a special case of Algebra, Lemma \ref{algebra-lemma-flat-ML-criterion}.
\end{proof}








\section{Flatness and finiteness conditions}
\label{section-flat-finite}

Expand Down

0 comments on commit 2f4d7fc

Please sign in to comment.