Skip to content

Commit

Permalink
Formulate optimal proposition
Browse files Browse the repository at this point in the history
Thanks to J\'anos Koll\'ar
  • Loading branch information
aisejohan committed Jul 1, 2015
1 parent b2cc24c commit 300c918
Showing 1 changed file with 60 additions and 11 deletions.
71 changes: 60 additions & 11 deletions dualizing.tex
Expand Up @@ -2384,7 +2384,7 @@ \section{Finiteness of local cohomology, I}
be the inclusion of a nonempty open subscheme with complement $Z$. Assume
that for all $z \in Z$ and any associated prime $\mathfrak p$ of
the completion $\mathcal{O}_{X, z}^\wedge$
satisfies $\dim(\mathcal{O}_{X, z}^\wedge/\mathfrak p) \geq 2$.
we have $\dim(\mathcal{O}_{X, z}^\wedge/\mathfrak p) \geq 2$.
Then $j_*\mathcal{O}_U$ is coherent.
\end{lemma}

Expand Down Expand Up @@ -2441,6 +2441,24 @@ \section{Finiteness of local cohomology, I}
Descent, Lemma \ref{descent-lemma-finite-type-descends}.
\end{proof}

\begin{remark}
\label{remark-closure}
Let $j : U \to X$ be an open immersion of locally Noetherian schemes.
Let $x \in U$. Let $i_x : W_x \to U$ be the integral closed subscheme
with generic point $x$ and let $\overline{\{x\}}$ be the closure in $X$.
Then we have a commutative diagram
$$
\xymatrix{
W_x \ar[d]_{i_x} \ar[r]_{j'} & \overline{\{x\}} \ar[d]^i \\
U \ar[r]^j & X
}
$$
We have $j_*i_{x, *}\mathcal{O}_{W_x} = i_*j'_*\mathcal{O}_{W_x}$.
As the left vertical arrow is a closed immersion we see that
$j_*i_{x, *}\mathcal{O}_{W_x}$ is coherent if and only of
$j'_*\mathcal{O}_{W_x}$ is coherent.
\end{remark}

\begin{lemma}
\label{lemma-finiteness-pushforward-general}
Let $X$ be a locally Noetherian scheme.
Expand All @@ -2462,16 +2480,9 @@ \section{Finiteness of local cohomology, I}
By Lemma \ref{lemma-check-finiteness-pushforward-on-associated-points}
it suffices to prove $j_*i_{x, *}\mathcal{O}_{W_x}$
is coherent for $x \in \text{Ass}(\mathcal{F})$.
Then we have a commutative diagram
$$
\xymatrix{
W_x \ar[d] \ar[r] & \overline{\{x\}} \ar[d] \\
U \ar[r] & X
}
$$
As the vertical arrows are closed immersions
it suffices to prove the result for the pushforward
along the top horizontal arrow. Moreover, the conditions
By Remark \ref{remark-closure}
we reduce to proving $(W_x \to \overline{\{x\}})_*\mathcal{O}_{W_x}$
is coherent. The conditions
(1), (2), and (3) are inherited by $W_x \subset \overline{\{x\}}$;
this is clear for (1) and (3) and for (2) this follows from
More on Algebra, Lemma \ref{more-algebra-lemma-formal-fibres-normal} and
Expand Down Expand Up @@ -2510,8 +2521,46 @@ \section{Finiteness of local cohomology, I}
$j_*\mathcal{O}_{X' \cap U}$ corresponds to $\kappa(x)$ as an
$\mathcal{O}_{X, z}$-module which cannot be finite as $x$ is not
a closed point.

\medskip\noindent
In fact, the converse of Lemma \ref{lemma-sharp-finiteness-pushforward}
holds true: given an open immersion $j : U \to X$ of integral Noetherian
schemes and there exists a $z \in X \setminus U$ and an associated prime
$\mathfrak p$ of the completion $\mathcal{O}_{X, z}^\wedge$
with $\dim(\mathcal{O}_{X, z}^\wedge/\mathfrak p) = 1$,
then $j_*\mathcal{O}_U$ is not coherent. Namely, you can pass to
the local ring, you can enlarge $U$ to the punctured spectrum,
you can pass to the completion, and then the argument above gives
the nonfiniteness.
\end{remark}

\begin{proposition}[Koll\'ar]
\label{proposition-kollar}
Let $j : U \to X$ be an open immersion of locally Noetherian schemes
with complement $Z$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_U$-module.
The following are equivalent
\begin{enumerate}
\item $j_*\mathcal{F}$ is coherent,
\item for $x \in \text{Ass}(\mathcal{F})$ let $W = \overline{\{x\}} \subset X$.
Then for all $z \in Z \cap W$ and any associated prime $\mathfrak p$ of the
completion $\mathcal{O}_{W, z}^\wedge$ we have
$\dim(\mathcal{O}_{W, z}^\wedge/\mathfrak p) \geq 2$.
\end{enumerate}
\end{proposition}

\begin{proof}
If (2) holds we get (1) by a combination of
Lemmas \ref{lemma-check-finiteness-pushforward-on-associated-points},
Remark \ref{remark-closure}, and
Lemma \ref{lemma-sharp-finiteness-pushforward}.
If (2) does not hold, then $j_*i_{x, *}\mathcal{O}_{W_x}$ is not finite
for some $x \in \text{Ass}(\mathcal{F})$ by the discussion in
Remark \ref{remark-no-finiteness-pushforward}
(and Remark \ref{remark-closure}).
Thus $j_*\mathcal{F}$ is not coherent by
Lemma \ref{lemma-check-finiteness-pushforward-on-associated-points}.
\end{proof}




Expand Down

0 comments on commit 300c918

Please sign in to comment.