Skip to content

Commit

Permalink
Fundamental group of a point
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Jul 17, 2015
1 parent d17a9b1 commit 3e69d45
Show file tree
Hide file tree
Showing 2 changed files with 157 additions and 100 deletions.
95 changes: 5 additions & 90 deletions etale-cohomology.tex
Expand Up @@ -7645,91 +7645,6 @@ \section{Vanishing of finite higher direct images}
\end{proof}


\section{Schemes \'etale over a point}
\label{section-schemes-etale-point}

\noindent
In this section we describe schemes \'etale over the spectrum of
a field. Before we state the result we introduce
the category of $G$-sets for a topological group $G$.

\begin{definition}
\label{definition-G-set-continuous}
Let $G$ be a topological group.
A {\it $G$-set}, sometime called a {\it discrete $G$-set},
is a set $X$ endowed with a left action $a : G \times X \to X$
such that $a$ is continuous when $X$ is given the discrete topology and
$G \times X$ the product topology.
A {\it morphism of $G$-sets} $f : X \to Y$ is simply any $G$-equivariant
map from $X$ to $Y$.
The category of $G$-sets is denoted {\it $G\textit{-Sets}$}.
\end{definition}

\noindent
The condition that $a : G \times X \to X$ is continuous signifies
simply that the stabilizer of any $x \in X$ is open in $G$.
If $G$ is an abstract group $G$ (i.e., a group but not a topological group)
then this agrees with our preceding definition (see for example
Sites, Example \ref{sites-example-site-on-group})
provided we endow $G$ with the discrete topology.

\medskip\noindent
Recall that if $K \subset L$ is an infinite Galois extension the
Galois group $G = \text{Gal}(L/K)$ comes endowed with a canonical
topology. Namely the open subgroups are the subgroups of the form
$\text{Gal}(L/K') \subset G$ where $K'/K$ is a finite subextension of $L/K$.
The index of an open subgroup is always finite.
We say that $G$ is a profinite (topological) group.

\begin{lemma}
\label{lemma-sheaves-point}
Let $K$ be a field.
Let $K^{sep}$ a separable closure of $K$.
Consider the profinite group
$$
G = \text{Aut}_{\Spec(K)}(\Spec(K^{sep}))^{opp} =
\text{Gal}(K^{sep}/K)
$$
The functor
$$
\begin{matrix}
\text{schemes \'etale over }K &
\longrightarrow &
G\textit{-Sets} \\
X/K & \longmapsto &
\Mor_{\Spec(K)}(\Spec(K^{sep}), X)
\end{matrix}
$$
is an equivalence of categories.
\end{lemma}

\begin{proof}
A scheme $X$ over $K$ is \'etale over $K$ if and only if
$X \cong \coprod_{i\in I} \Spec(K_i)$ with
each $K_i$ a finite separable extension of $K$.
The functor of the lemma associates to $X$ the $G$-set
$$
\coprod\nolimits_i \Hom_K(K_i, K^{sep})
$$
with its natural left $G$-action. Each element has an open stabilizer
by definition of the topology on $G$. Conversely, any $G$-set $S$
is a disjoint union of its orbits. Say $S = \coprod S_i$. Pick $s_i \in S_i$
and denote $G_i \subset G$ its open stabilizer. By Galois theory the fields
$(K^{sep})^{G_i}$ are finite separable field extensions of $K$, and
hence the scheme
$$
\coprod\nolimits_i \Spec((K^{sep})^{G_i})
$$
is \'etale over $K$. This gives an inverse to the functor of the lemma.
Some details omitted.
\end{proof}

\begin{remark}
\label{remark-covering-surjective}
Under the correspondence of the lemma, the coverings in the small \'etale site
$\Spec(K)_\etale$ of $K$ correspond to surjective families of
maps in $G\textit{-Sets}$.
\end{remark}



Expand Down Expand Up @@ -7838,7 +7753,7 @@ \section{Galois action on stalks}
\end{enumerate}
Altogether we see that $\mathcal{F}_{\overline{s}}$ becomes a
$\text{Gal}_{\kappa(s)}$-set (see
Definition \ref{definition-G-set-continuous}).
\'Etale Morphisms, Definition \ref{etale-definition-G-set-continuous}).
Hence we may think of the stalk functor as a functor
$$
\Sh(S_\etale) \longrightarrow
Expand All @@ -7863,7 +7778,7 @@ \section{Galois action on stalks}

\begin{proof}
Let us construct the inverse to this functor. In
Lemma \ref{lemma-sheaves-point}
\'Etale Morphisms of Schemes, Lemma \ref{etale-lemma-sheaves-point}
we have seen that given a $G$-set $M$ there exists an \'etale morphism
$X \to \Spec(K)$
such that $\Mor_K(\Spec(K^{sep}), X)$ is
Expand All @@ -7878,9 +7793,9 @@ \section{Galois action on stalks}

\begin{remark}
\label{remark-every-sheaf-representable}
Another way to state the conclusions of
Lemmas \ref{lemma-sheaves-point} and
Theorem \ref{theorem-equivalence-sheaves-point}
Another way to state the conclusion of
Theorem \ref{theorem-equivalence-sheaves-point} and
\'Etale Morphisms of Schemes, Lemma \ref{etale-lemma-sheaves-point}
is to say that every sheaf on $\Spec(K)_\etale$ is representable
by a scheme $X$ \'etale over $\Spec(K)$.
This does not mean that every sheaf is representable in the sense of
Expand Down
162 changes: 152 additions & 10 deletions etale.tex
Expand Up @@ -2184,6 +2184,94 @@ \section{Relative morphisms}



\section{Schemes \'etale over a point}
\label{section-schemes-etale-point}

\noindent
In this section we describe schemes \'etale over the spectrum of a field.
Before we state the result we introduce the category of $G$-sets for a
topological group $G$.

\begin{definition}
\label{definition-G-set-continuous}
Let $G$ be a topological group.
A {\it $G$-set}, sometime called a {\it discrete $G$-set},
is a set $X$ endowed with a left action $a : G \times X \to X$
such that $a$ is continuous when $X$ is given the discrete topology and
$G \times X$ the product topology.
A {\it morphism of $G$-sets} $f : X \to Y$ is simply any $G$-equivariant
map from $X$ to $Y$.
The category of $G$-sets is denoted {\it $G\textit{-Sets}$}.
\end{definition}

\noindent
The condition that $a : G \times X \to X$ is continuous signifies
simply that the stabilizer of any $x \in X$ is open in $G$.
If $G$ is an abstract group $G$ (i.e., a group but not a topological group)
then this agrees with our preceding definition (see for example
Sites, Example \ref{sites-example-site-on-group})
provided we endow $G$ with the discrete topology.

\medskip\noindent
Recall that if $K \subset L$ is an infinite Galois extension then the
Galois group $G = \text{Gal}(L/K)$ comes endowed with a canonical
topology, see Fields, Section \ref{fields-section-infinite-galois}.

\begin{lemma}
\label{lemma-sheaves-point}
Let $K$ be a field. Let $K^{sep}$ a separable closure of $K$.
Consider the profinite group $G = \text{Gal}(K^{sep}/K)$.
The functor
$$
\begin{matrix}
\text{schemes \'etale over }K &
\longrightarrow &
G\textit{-Sets} \\
X/K & \longmapsto &
\Mor_{\Spec(K)}(\Spec(K^{sep}), X)
\end{matrix}
$$
is an equivalence of categories.
\end{lemma}

\begin{proof}
A scheme $X$ over $K$ is \'etale over $K$ if and only if
$X \cong \coprod_{i\in I} \Spec(K_i)$ with
each $K_i$ a finite separable extension of $K$
(Morphisms, Lemma \ref{morphisms-lemma-etale-over-field}).
The functor of the lemma associates to $X$ the $G$-set
$$
\coprod\nolimits_i \Hom_K(K_i, K^{sep})
$$
with its natural left $G$-action. Each element has an open stabilizer
by definition of the topology on $G$. Conversely, any $G$-set $S$
is a disjoint union of its orbits. Say $S = \coprod S_i$. Pick $s_i \in S_i$
and denote $G_i \subset G$ its open stabilizer. By Galois theory
(Fields, Theorem \ref{fields-theorem-inifinite-galois-theory})
the fields $(K^{sep})^{G_i}$ are finite separable field extensions of $K$, and
hence the scheme
$$
\coprod\nolimits_i \Spec((K^{sep})^{G_i})
$$
is \'etale over $K$. This gives an inverse to the functor of the lemma.
Some details omitted.
\end{proof}

\begin{remark}
\label{remark-covering-surjective}
Under the correspondence of Lemma \ref{lemma-sheaves-point},
the coverings in the small \'etale site
$\Spec(K)_\etale$ of $K$ correspond to surjective families of
maps in $G\textit{-Sets}$.
\end{remark}









\section{Galois categories}
\label{section-galois}
Expand Down Expand Up @@ -2215,20 +2303,16 @@ \section{Galois categories}

\begin{example}
\label{example-galois-category-G-sets}
Let $G$ be a topological group. A $G$-set, sometimes called a discrete
$G$-set is a set $X$ endowed with a left action $a : G \times X \to X$
such that $a$ is continuous when $X$ is given the discrete topology
and $G \times X$ the product topology. A morphism of $G$-sets $f : X \to Y$
is a $G$-equivariant map from $X$ to $Y$. The category of $G$-sets
is denoted $G\textit{-Sets}$.
An important example will be the forgetful functor
Let $G$ be a topological group. An important example will be the
forgetful functor
\begin{equation}
\label{equation-forgetful}
\textit{Finite-}G\textit{-Sets} \longrightarrow \textit{Sets}
\end{equation}
where $\textit{Finite-}G\textit{-Sets}$
is the full subcategory of $G\textit{-Sets}$
whose objects are the finite $G$-sets.
where $\textit{Finite-}G\textit{-Sets}$ is the full subcategory of
$G\textit{-Sets}$ whose objects are the finite $G$-sets.
The category $G\textit{-Sets}$ of $G$-sets is defined in
Definition \ref{definition-G-set-continuous}.
\end{example}

\noindent
Expand Down Expand Up @@ -3116,6 +3200,64 @@ \section{Finite \'etale morphisms}
transformation of functors to get (3).
\end{proof}

\begin{lemma}
\label{lemma-fundamental-group-Galois-group}
Let $k$ be a field and let $\overline{k}$ be an algebraic closure.
Set $X = \Spec(k)$ and denote $\overline{x} : \Spec(\overline{k}) \to X$
be the geometric point corresponding to our chose algebraic closure.
Let $k \subset k^{sep} \subset \overline{k}$ be the separable
algebraic closure. There is a canonical isomorphism
$$
\text{Gal}(k^{sep}/k) \longrightarrow \pi_1(X, \overline{x})
$$
of profinite topological groups.
\end{lemma}

\begin{proof}
We first carefully construct the map. Observe that
$\text{Gal}(k^{sep}/k) = \text{Aut}(\overline{k}/k)$
as $\overline{k}$ is the perfection of $k^{sep}$.
Then recall that $\pi_1(X, \overline{x}) = \text{Aut}(F_{\overline{x}})$
where $F_{\overline{x}}$ is the functor
$$
Y \longmapsto F_{\overline{x}}(Y) = \Mor_X(\Spec(\overline{k}), Y)
$$
Consider the map
$$
\text{Aut}(\overline{k}/k) \times F_{\overline{x}}(Y)
\to F_{\overline{x}}(Y),\quad
(\sigma, \overline{y}) \mapsto
\sigma \cdot \overline{y} = \overline{y} \circ \Spec(\sigma)
$$
This is an action because
$$
\sigma\tau \cdot \overline{y} =
\overline{y} \circ \Spec(\sigma\tau) =
\overline{y} \circ \Spec(\tau) \circ \Spec(\sigma) =
\sigma \cdot (\tau \cdot \overline{y})
$$
The action is functorial in $Y \in \textit{F\'Et}_X$ and we
obtain the canonical map.

\medskip\noindent
Using our map above for every object $Y$ in $\textit{F\'Et}_X$
the finite set $F_{\overline{x}}(Y)$ gets a canonical
$\text{Gal}(k^{sep}/k)$-action. To finish the proof it suffices
to show that each $F_{\overline{x}}(Y)$ is an object of
$\textit{Finite-}\text{Gal}(k^{sep}/k)\textit{-Sets}$
and that in this way we obtain an equivalence of categories
$\textit{F\'Et}_X \to \textit{Finite-}\text{Gal}(k^{sep}/k)\textit{-Sets}$.
This is sufficient by the recognition results in
Proposition \ref{proposition-galois} and
Lemma \ref{lemma-single-out-profinite}.
To see this one shows that the construction given here
is the same as the construction in the equivalence
Lemma \ref{lemma-sheaves-point}
and that the equivalence of that lemma induces an equivalence between
the category of finite \'etale schemes over $\Spec(K)$
and finite $G$-sets. We omit the details.
\end{proof}




Expand Down

0 comments on commit 3e69d45

Please sign in to comment.