Skip to content

Commit

Permalink
Fix statement and proof of proposition in derived
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Apr 17, 2024
1 parent c20f762 commit 86a8097
Showing 1 changed file with 19 additions and 15 deletions.
34 changes: 19 additions & 15 deletions derived.tex
Expand Up @@ -4879,10 +4879,12 @@ \section{Derived functors in general}
of triangulated categories.
\item Elements of $S$ with either source or target
in $\mathcal{E}$ are morphisms of $\mathcal{E}$.
\item The functor $S_\mathcal{E}^{-1}\mathcal{E} \to S^{-1}\mathcal{D}$
is a fully faithful exact functor of triangulated categories.
\item Any element of $S_\mathcal{E} = \text{Arrows}(\mathcal{E}) \cap S$
is mapped to an isomorphism by $RF$.
\item The set $S_\mathcal{E}$ is a saturated multiplicative system in
$\mathcal{E}$ compatible with the triangulated structure.
\item The functor $S_\mathcal{E}^{-1}\mathcal{E} \to S^{-1}\mathcal{D}$
is a fully faithful exact functor of triangulated categories.
\item We obtain an exact functor
$$
RF : S_\mathcal{E}^{-1}\mathcal{E} \longrightarrow \mathcal{D}'.
Expand All @@ -4896,24 +4898,26 @@ \section{Derived functors in general}
\begin{proof}
Since $S$ is saturated it contains all isomorphisms (see remark
following Categories, Definition
\ref{categories-definition-saturated-multiplicative-system}). Hence
(1) follows from Lemmas \ref{lemma-derived-inverts},
\ref{lemma-2-out-of-3-defined}, and
\ref{lemma-derived-shift}. We get (2) from
Lemmas \ref{lemma-derived-functor}, \ref{lemma-derived-shift}, and
\ref{lemma-2-out-of-3-defined}. We get (3) from
Lemma \ref{lemma-derived-inverts}. The fully faithfulness in (4) follows
from (3) and the definitions. The fact that
$S_\mathcal{E}^{-1}\mathcal{E} \to S^{-1}\mathcal{D}$ is exact
follows from the fact that a triangle in $S_\mathcal{E}^{-1}\mathcal{E}$
is distinguished if and only if it is isomorphic to the image of a
\ref{categories-definition-saturated-multiplicative-system}).
Hence (1) follows from Lemmas \ref{lemma-derived-inverts},
\ref{lemma-2-out-of-3-defined}, and \ref{lemma-derived-shift}.
We get (2) from Lemmas \ref{lemma-derived-functor}, \ref{lemma-derived-shift},
and \ref{lemma-2-out-of-3-defined}.
We get (3) from Lemma \ref{lemma-derived-inverts}.
Part (4) follows from Lemma \ref{lemma-derived-inverts}.
Part (5) follows from the definitions and part (3).
The fully faithfulness in (6) follows from (3) and
the definitions. The fact that
$S_\mathcal{E}^{-1}\mathcal{E} \to S^{-1}\mathcal{D}$
is exact follows from the fact that a triangle in
$S_\mathcal{E}^{-1}\mathcal{E}$ is distinguished
if and only if it is isomorphic to the image of a
distinguished triangle in $\mathcal{E}$, see proof of
Proposition \ref{proposition-construct-localization}.
Part (5) follows from Lemma \ref{lemma-derived-inverts}.
The factorization of $RF : \mathcal{E} \to \mathcal{D}'$
through an exact functor $S_\mathcal{E}^{-1}\mathcal{E} \to \mathcal{D}'$
follows from Lemma \ref{lemma-universal-property-localization}.
Part (7) follows from Lemma \ref{lemma-direct-sum-defined}.
Finally, part (8) follows from Lemma \ref{lemma-direct-sum-defined}.
\end{proof}

\noindent
Expand Down

0 comments on commit 86a8097

Please sign in to comment.