Skip to content

Commit

Permalink
Remove canonicity
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Apr 10, 2024
1 parent c1ea75a commit 8b63274
Show file tree
Hide file tree
Showing 5 changed files with 103 additions and 34 deletions.
18 changes: 13 additions & 5 deletions cohomology.tex
Expand Up @@ -9597,7 +9597,9 @@ \section{Derived limits}
H^p(U, H^{m - p}(E)) = 0 \text{ for }
U \in \mathfrak{U}_x \text{ and } p > p(x, m)
$$
Then the canonical map $E \to R\lim \tau_{\geq -n} E$
Then the map $E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O}_X)$.
\end{lemma}

Expand Down Expand Up @@ -9663,7 +9665,9 @@ \section{Derived limits}
H^p(U, H^q(E)) = 0 \text{ for }
U \in \mathfrak{U}_x,\ p > d_x, \text{ and }q < 0
$$
Then the canonical map $E \to R\lim \tau_{\geq -n} E$
Then the map $E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O}_X)$.
\end{lemma}

Expand All @@ -9682,7 +9686,9 @@ \section{Derived limits}
elements of $\mathcal{B}$, and
\item $H^p(U, H^{m - p}(E)) = 0$ for $p > p(m)$ and $U \in \mathcal{B}$.
\end{enumerate}
Then the canonical map $E \to R\lim \tau_{\geq -n} E$
Then the map $E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O}_X)$.
\end{lemma}

Expand All @@ -9701,7 +9707,9 @@ \section{Derived limits}
H^p(U, H^q(E)) = 0 \text{ for }
U \in \mathcal{B},\ p > d, \text{ and }q < 0
$$
Then the canonical map $E \to R\lim \tau_{\geq -n} E$
Then the map $E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O}_X)$.
\end{lemma}

Expand Down Expand Up @@ -9855,7 +9863,7 @@ \section{Producing K-injective resolutions}

\begin{proof}
By Derived Categories, Lemma \ref{derived-lemma-difficulty-K-injectives}
it suffices to show that the canonical map
it suffices to show that the map
$\mathcal{F}^\bullet \to R\lim \tau_{\geq -n} \mathcal{F}^\bullet$
is an isomorphism. This is Lemma \ref{lemma-is-limit-dimension}.
\end{proof}
Expand Down
74 changes: 60 additions & 14 deletions derived.tex
Expand Up @@ -10078,7 +10078,7 @@ \section{Derived colimits}
We may think of a derived colimit as an object $K$
of $\mathcal{D}$ endowed with morphisms $i_n : K_n \to K$
such that $i_{n + 1} \circ f_n = i_n$ and such that there
exists a morphism $c : K \to \bigoplus K_n$ with the property that
exists a morphism $c : K \to \bigoplus K_n[1]$ with the property that
$$
\bigoplus K_n \xrightarrow{1 - f_n} \bigoplus K_n \xrightarrow{i_n}
K \xrightarrow{c} \bigoplus K_n[1]
Expand Down Expand Up @@ -10349,7 +10349,7 @@ \section{Derived limits}
K \to \prod K_n \to \prod K_n \to K[1]
$$
where the map $\prod K_n \to \prod K_n$ is given
by $(k_n) \mapsto (k_n - f_{n+1}(k_{n + 1}))$. If this is the
by $(k_n) \mapsto (k_n - f_{n + 1}(k_{n + 1}))$. If this is the
case, then we sometimes indicate this by the notation $K = R\lim K_n$.
\end{definition}

Expand Down Expand Up @@ -10421,17 +10421,50 @@ \section{Derived limits}
Lemma \ref{lemma-product-K-injective}.
\end{proof}

\begin{remark}
\label{remark-map-into-derived-limit-truncations}
Let $\mathcal{A}$ be an abelian category. Let $K^\bullet$ be a
complex of $\mathcal{A}$. Then $\tau_{\geq -n}K^\bullet$ is an
inverse system of complexes and which in particular determines
an inverse system in $D(\mathcal{A})$. Let us assume that
$R\lim \tau_{\geq -n}K^\bullet$ exists. Then the canonical maps
$c_n : K^\bullet \to \tau_{\geq -n}K^\bullet$ are compatible with the
transition maps of our inverse system. By the defining distinguished
triangle of Definition \ref{definition-derived-limit} and
Lemma \ref{lemma-representable-homological}
we conclude there exists a morphism
$$
c : K^\bullet \longrightarrow R\lim \tau_{\geq -n}K^\bullet
$$
in $D(\mathcal{A})$ such that the composition of $c$ with the projection
$R\lim \tau_{\geq -n}K^\bullet \to \tau_{\geq -m}K^\bullet$ is equal to $c_m$.
Now the morphism $c$ may not be unique, but we claim that whether or not
$c$ is an isomorphism is independent of the choice of $c$ (and of our choice
of the homotopy limit). Namely, for $i \in \mathbf{Z}$ and for $m > -i$
the composition
$$
H^i(K^\bullet) \xrightarrow{H^i(c)} H^i(R\lim \tau_{\geq -n}K^\bullet)
\to H^i(\tau_{\geq -m}K^\bullet) = H^i(K^\bullet)
$$
is the identity. Hence $H^i(c)$ is an isomorphism if and only if the
second map is an isomorphism. This is independent of $c$ and also
independent of the choice of the homotopy limit (as any two choices
are isomorphic).
\end{remark}

\begin{lemma}
\label{lemma-difficulty-K-injectives}
Let $\mathcal{A}$ be an abelian category with countable products and
enough injectives. Let $K^\bullet$ be a complex. Let $I_n^\bullet$ be
the inverse system of bounded below complexes of injectives produced by
Lemma \ref{lemma-special-inverse-system}. Then
$I^\bullet = \lim I_n^\bullet$ exists, is K-injective, and
the following are equivalent
$I^\bullet = \lim I_n^\bullet$ exists, is K-injective, represents
$R\lim \tau_{\geq -n}K^\bullet$ in $D(\mathcal{A})$,
and the following are equivalent
\begin{enumerate}
\item the map $K^\bullet \to I^\bullet$ is a quasi-isomorphism,
\item the canonical map $K^\bullet \to R\lim \tau_{\geq -n}K^\bullet$
\item the map $K^\bullet \to I^\bullet$ (see proof) is a quasi-isomorphism,
\item the map $K^\bullet \to R\lim \tau_{\geq -n}K^\bullet$
of Remark \ref{remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{A})$.
\end{enumerate}
\end{lemma}
Expand Down Expand Up @@ -10464,20 +10497,33 @@ \section{Derived limits}
products in $D(\mathcal{A})$.
It follows that $I^\bullet$ represents $R\lim I_n^\bullet$
(Definition \ref{definition-derived-limit}).
Moreover, it follows that $I^\bullet$ is K-injective by
Since $R\lim I_n^\bullet \cong R\lim \tau_{\geq -n}K^\bullet$
as derived limits are defined on the level of the derived
category, we see that $I^\bullet$ represents $R\lim \tau_{\geq -n}K^\bullet$.
Moreover, the complex $I^\bullet$ is K-injective by
Lemma \ref{lemma-triangle-K-injective}.
By the commutative diagram of Lemma \ref{lemma-special-inverse-system}
we obtain a corresponding commutative diagram
and since $K^i = (\tau_{\geq -n}K^\bullet)^i$
for $n \gg 0$ we see that we get a unique map
$\gamma : K^\bullet \to I^\bullet$ such that the diagrams
$$
\xymatrix{
K^\bullet \ar[r] \ar[d]_\gamma & \tau_{\geq -n} K^\bullet \ar[d] \\
I^\bullet \ar[r] & I_n^\bullet
}
$$
commute. It follows that $\gamma$ is a map of complexes which represents
the map $c : K^\bullet \to R\lim \tau_{\geq -n}K^\bullet$ of
Remark \ref{remark-map-into-derived-limit-truncations}
in $D(\mathcal{A})$. In other words, the diagram
$$
\xymatrix{
K^\bullet \ar[r] \ar[d] & R\lim \tau_{\geq -n} K^\bullet \ar[d] \\
I^\bullet \ar[r] & R\lim I_n^\bullet
K^\bullet \ar[r]_-c \ar[d]_\gamma & R\lim \tau_{\geq -n} K^\bullet
\ar[d]^{\cong} \\
I^\bullet \ar[r]^-{\cong} & R\lim I_n^\bullet
}
$$
in $D(\mathcal{A})$. Since the right vertical arrow is an isomorphism
(as derived limits are defined on the level of the derived category
and since $\tau_{\geq -n}K^\bullet \to I_n^\bullet$ is a quasi-isomorphism),
the lemma follows.
is commutative in $D(\mathcal{A})$. The lemma follows.
\end{proof}

\begin{lemma}
Expand Down
10 changes: 6 additions & 4 deletions perfect.tex
Expand Up @@ -135,10 +135,12 @@ \section{Derived category of quasi-coherent modules}
\begin{lemma}
\label{lemma-nice-K-injective}
Let $X$ be a scheme. Let $E$ be an object of
$D_\QCoh(\mathcal{O}_X)$. Then the canonical map
$E \to R\lim \tau_{\geq -n}E$ is an isomorphism\footnote{In particular,
$E$ has a K-injective representative as in
Cohomology, Lemma \ref{cohomology-lemma-K-injective}.}.
$D_\QCoh(\mathcal{O}_X)$. Then the map $E \to R\lim \tau_{\geq -n}E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism\footnote{In particular,
$E$ has a K-injective representative by
Derived Categories, Lemma \ref{derived-lemma-difficulty-K-injectives}.}.
\end{lemma}

\begin{proof}
Expand Down
24 changes: 17 additions & 7 deletions sites-cohomology.tex
Expand Up @@ -5329,7 +5329,9 @@ \section{Derived and homotopy limits}
for all $\{V_i \to V\} \in \text{Cov}_V$ and all integers $p, m$
satisfying $p > p(V, m)$.
\end{enumerate}
Then the canonical map $E \to R\lim \tau_{\geq -n} E$
Then the map $E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O})$.
\end{lemma}

Expand Down Expand Up @@ -5397,7 +5399,9 @@ \section{Derived and homotopy limits}
\{V_i \to V\} \in \text{Cov}_V,\ p > d_V, \text{ and }q < 0
$$
\end{enumerate}
Then the canonical map $E \to R\lim \tau_{\geq -n} E$
Then the map $E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O})$.
\end{lemma}

Expand All @@ -5416,7 +5420,9 @@ \section{Derived and homotopy limits}
elements of $\mathcal{B}$,
\item $H^p(V, H^{m - p}(E)) = 0$ for $p > p(m)$ and $V \in \mathcal{B}$.
\end{enumerate}
Then the canonical map $E \to R\lim \tau_{\geq -n} E$
Then the map $E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O})$.
\end{lemma}

Expand All @@ -5437,7 +5443,9 @@ \section{Derived and homotopy limits}
elements of $\mathcal{B}$,
\item $H^p(V, H^q(E)) = 0$ for $p > d$, $q < 0$, and $V \in \mathcal{B}$.
\end{enumerate}
Then the canonical map $E \to R\lim \tau_{\geq -n} E$
Then the map $E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O})$.
\end{lemma}

Expand Down Expand Up @@ -5591,7 +5599,7 @@ \section{Producing K-injective resolutions}

\begin{proof}
By Derived Categories, Lemma \ref{derived-lemma-difficulty-K-injectives}
it suffices to show that the canonical map
it suffices to show that the map
$\mathcal{F}^\bullet \to R\lim \tau_{\geq -n} \mathcal{F}^\bullet$
is an isomorphism. This follows from Lemma \ref{lemma-is-limit-dimension}.
\end{proof}
Expand Down Expand Up @@ -5700,8 +5708,10 @@ \section{Bounded cohomological dimension}
for sites.
\end{reference}
In Situation \ref{situation-olsson-laszlo} for any
$E \in D_\mathcal{A}(\mathcal{O})$ the canonical map
$E \to R\lim \tau_{\geq -n} E$
$E \in D_\mathcal{A}(\mathcal{O})$ the map
$E \to R\lim \tau_{\geq -n} E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism in $D(\mathcal{O})$.
\end{lemma}

Expand Down
11 changes: 7 additions & 4 deletions spaces-perfect.tex
Expand Up @@ -451,10 +451,13 @@ \section{Derived category of quasi-coherent modules}
\begin{lemma}
\label{lemma-nice-K-injective}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $E$ be an
object of $D_\QCoh(\mathcal{O}_X)$. Then the canonical map
$E \to R\lim \tau_{\geq -n}E$ is an isomorphism\footnote{In particular,
$E$ has a K-injective representative as in
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-K-injective}.}.
object of $D_\QCoh(\mathcal{O}_X)$. Then the map
$E \to R\lim \tau_{\geq -n}E$ of
Derived Categories, Remark
\ref{derived-remark-map-into-derived-limit-truncations}
is an isomorphism\footnote{In particular,
$E$ has a K-injective representative, see
Derived Categories, Lemma \ref{derived-lemma-difficulty-K-injectives}.}.
\end{lemma}

\begin{proof}
Expand Down

0 comments on commit 8b63274

Please sign in to comment.