Skip to content

Commit

Permalink
Coequalizer or pushout fpqc local on it
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Jul 17, 2015
1 parent 1704205 commit 94311a0
Show file tree
Hide file tree
Showing 2 changed files with 70 additions and 1 deletion.
33 changes: 33 additions & 0 deletions descent.tex
Expand Up @@ -3127,6 +3127,39 @@ \section{Fpqc coverings are universal effective epimorphisms}
morphism $\Spec(R) \to S$.
\end{proof}

\begin{lemma}
\label{lemma-coequalizer-fpqc-local}
Consider schemes $X, Y, Z$ and morphisms $a, b : X \to Y$ and
a morphism $c : Y \to Z$ with $c \circ a = c \circ b$. Set
$d = c \circ a = c \circ b$. If there exists an
fpqc covering $\{Z_i \to Z\}$ such that
\begin{enumerate}
\item for all $i$ the morphism $Y \times_{c, Z} Z_i \to Z_i$
is the coequalizer of $(a, 1) : X \times_{d, Z} Z_i \to Y \times_{c, Z} Z_i$
and $(b, 1) : X \times_{d, Z} Z_i \to Y \times_{c, Z} Z_i$, and
\item for all $i$ and $i'$ the morphism
$Y \times_{c, Z} (Z_i \times_Z Z_{i'}) \to (Z_i \times_Z Z_{i'})$
is the coequalizer of
$(a, 1) : X \times_{d, Z} (Z_i \times_Z Z_{i'}) \to
Y \times_{c, Z} (Z_i \times_Z Z_{i'})$ and
$(b, 1) : X \times_{d, Z} (Z_i \times_Z Z_{i'}) \to
Y \times_{c, Z} (Z_i \times_Z Z_{i'})$
\end{enumerate}
then $c$ is the coequalizer of $a$ and $b$.
\end{lemma}

\begin{proof}
Namely, for a scheme $T$ a morphism $Z \to T$ is the same thing as
a collection of morphism $Z_i \to T$ which agree on overlaps by
Lemma \ref{lemma-fpqc-universal-effective-epimorphisms}.
\end{proof}










Expand Down
38 changes: 37 additions & 1 deletion more-morphisms.tex
Expand Up @@ -2686,7 +2686,43 @@ \section{Pushouts in the category of schemes}
\noindent
In this section we collect some results on pushouts in the category of schemes.
See Categories, Section \ref{categories-section-pushouts} for a general
discussion of pushouts in any category. We first discuss the case where
discussion of pushouts in any category.

\begin{lemma}
\label{lemma-pushout-fpqc-local}
Consider a commutative diagram of schemes
$$
\xymatrix{
Z \ar[r]_i \ar[d]_j & X \ar[d]^a \\
Y \ar[r]^-b & W
}
$$
and set $c = a \circ i = b \circ j$. If there exists an fpqc covering
$\{W_i \to W\}$ such that for all $i$ and $i'$ the diagrams
$$
\xymatrix{
Z \times_{c, W} W_i \ar[r] \ar[d] & X \times_{a, W} W_i \ar[d] \\
Y \times_{b, W} W_i \ar[r] & W_i
}
\quad
\xymatrix{
Z \times_{c, W} (W_i \times_W W_{i'}) \ar[r] \ar[d] &
X \times_{a, W} (W_i \times_W W_{i'}) \ar[d] \\
Y \times_{b, W} (W_i \times_W W_{i'}) \ar[r] &
(W_i \times_W W_{i'})
}
$$
are cocartesian, then so is the original diagram.
\end{lemma}

\begin{proof}
Namely, for a scheme $T$ a morphism $W \to T$ is the same thing as
a collection of morphism $W_i \to T$ which agree on overlaps, see
Descent, Lemma \ref{descent-lemma-fpqc-universal-effective-epimorphisms}.
\end{proof}

\noindent
Next, we discuss existence in the case where
both morphisms are closed immersions.

\begin{lemma}
Expand Down

0 comments on commit 94311a0

Please sign in to comment.