Skip to content

Commit

Permalink
Improve definition catenary ring
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Apr 29, 2021
1 parent fa4de57 commit b39ddff
Showing 1 changed file with 26 additions and 3 deletions.
29 changes: 26 additions & 3 deletions algebra.tex
Expand Up @@ -14099,13 +14099,31 @@ \section{Noetherian local rings}
\section{Dimension}
\label{section-dimension}

\noindent
Please compare with
Topology, Section \ref{topology-section-krull-dimension}.

\begin{definition}
\label{definition-chain-primes}
Let $R$ be a ring. A {\it chain of prime ideals} is a sequence
$\mathfrak p_0 \subset \mathfrak p_1 \subset \ldots \subset \mathfrak p_n$
of prime ideals of $R$ such that $\mathfrak p_i \not = \mathfrak p_{i + 1}$
for $i = 0, \ldots, n - 1$. The {\it length} of this chain of prime
ideals is $n$.
\end{definition}

\noindent
Recall that we have an inclusion reversing bijection between prime
ideals of a ring $R$ and irreducible closed subsets of $\Spec(R)$,
see Lemma \ref{lemma-irreducible}.

\begin{definition}
\label{definition-Krull}
The {\it Krull dimension} of the ring $R$ is the
Krull dimension of the topological space $\Spec(R)$, see
Topology, Definition \ref{topology-definition-Krull}.
In other words it is the supremum of the integers $n\geq 0$
such that there exists a chain of prime ideals of length $n$:
such that $R$ has a chain of prime ideals
$$
\mathfrak p_0
\subset
Expand All @@ -14116,6 +14134,7 @@ \section{Dimension}
\mathfrak p_n, \quad
\mathfrak p_i \not = \mathfrak p_{i + 1}.
$$
of length $n$.
\end{definition}

\begin{definition}
Expand Down Expand Up @@ -24936,12 +24955,16 @@ \section{Cohen-Macaulay rings}
\section{Catenary rings}
\label{section-catenary}

\noindent
Compare with Topology, Section \ref{topology-section-catenary-spaces}.

\begin{definition}
\label{definition-catenary}
A ring $R$ is said to be {\it catenary} if for any pair of prime ideals
$\mathfrak p \subset \mathfrak q$, all maximal chains of primes
$\mathfrak p \subset \mathfrak q$, there exists an integer bounding the
lengths of all finite chains of prime ideals
$\mathfrak p = \mathfrak p_0 \subset \mathfrak p_1 \subset \ldots \subset
\mathfrak p_e = \mathfrak q$ have the same (finite) length.
\mathfrak p_e = \mathfrak q$ and all maximal such chains have the same length.
\end{definition}

\begin{lemma}
Expand Down

0 comments on commit b39ddff

Please sign in to comment.