Skip to content

Commit

Permalink
Small fix
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Mar 9, 2013
1 parent e789f18 commit d9f5975
Showing 1 changed file with 17 additions and 11 deletions.
28 changes: 17 additions & 11 deletions etale-cohomology.tex
Expand Up @@ -9311,7 +9311,7 @@ \section{Traces}
$$
(\mathbf{Z}/\ell^n\mathbf{Z})[G]^\natural
=
\bigoplus_{\frac{conjugacy }{classes of G}}
\bigoplus\nolimits_{\text{conjugacy classes of }G}
\mathbf{Z}/\ell^n\mathbf{Z}.
$$
For a free $\Lambda$-module, we have $\text{End}_\Lambda(\Lambda^{\oplus m}) =
Expand Down Expand Up @@ -9728,8 +9728,10 @@ \section{Perfectness}
We denote by $K_{perf}(\Lambda)$ the category whose objects are bounded
complexes of finite projective $\Lambda$-modules, and whose morphisms are
morphisms of complexes up to homotopy. The functor $K_{perf}(\Lambda)\to
D(\Lambda)$ is fully faithful, and we denote $D_{perf}(\Lambda)$ its essential
image. An object of $D(\Lambda)$ is called {\it perfect} if it is in
D(\Lambda)$ is fully faithful (Derived Categories, Lemma
\ref{derived-lemma-morphisms-from-projective-complex}).
Denote $D_{perf}(\Lambda)$ its essential image.
An object of $D(\Lambda)$ is called {\it perfect} if it is in
$D_{perf}(\Lambda)$.
\end{definition}

Expand All @@ -9740,17 +9742,21 @@ \section{Perfectness}
\end{proposition}

\begin{proof}
Let $P^\bullet$ be a bounded complex of finite projective $\Lambda$-modules and
$\alpha: P^\bullet \cong K$ be an isomorphism in $D(\Lambda)$. Then
$\alpha^{-1}\circ f\circ \alpha$ is the class of some morphism of complexes
$f^\bullet: P^\bullet \to P^\bullet$ by (insert reference here).
We will use Derived Categories, Lemma
\ref{derived-lemma-morphisms-from-projective-complex}
without further mention in this proof.
Let $P^\bullet$ be a bounded complex of finite projective $\Lambda$-modules
and let $\alpha: P^\bullet \to K$ be an isomorphism in $D(\Lambda)$. Then
$\alpha^{-1}\circ f\circ \alpha$ corresponds to a morphism of complexes
$f^\bullet: P^\bullet \to P^\bullet$ well defined up to homotopy.
Set
$$
\text{Tr}(f) = \sum_i (-1)^i \text{Tr}(f^i: P^i \to P^i) \in \Lambda^\natural.
$$
Given $P^\bullet$ and $\alpha$, this is independent of the choice of
$f^\bullet$: any other choice is of the form $\tilde{f}^\bullet = f^\bullet +
dh +hd$ for some $h^i: P^i \to P^{i-1}(i\in \mathbf{Z})$. But
$f^\bullet$. Namely, any other choice is of the form
$\tilde{f}^\bullet = f^\bullet + dh +hd$ for some
$h^i: P^i \to P^{i-1}(i\in \mathbf{Z})$. But
\begin{eqnarray*}
\text{Tr}(dh) & = & \sum_i (-1)^i \text{Tr}(P^i\xrightarrow{dh} P^i) \\
& = & \sum_i (-1)^i \text{Tr}(P^{i-1}\xrightarrow{hd} P^{i-1}) \\
Expand All @@ -9759,7 +9765,7 @@ \section{Perfectness}
\end{eqnarray*}
and so $\sum_i (-1)^i \text{Tr} ((dh+hd)|_{P^i})=0$.
Furthermore, this is independent of the choice of $(P^\bullet , \alpha)$:
suppose $(Q^\bullet, \beta)$ is another choice. Then by ???, the compositions
suppose $(Q^\bullet, \beta)$ is another choice. The compositions
$$
Q^\bullet \xrightarrow{\beta} K \xrightarrow{\alpha^{-1}} P^\bullet
\quad\text{and}\quad
Expand All @@ -9777,7 +9783,7 @@ \section{Perfectness}
& = & \text{Tr}(f^\bullet|_{P^\bullet})
\end{eqnarray*}
by the fact that $\gamma_1^\bullet \circ \gamma_2^\bullet$ is homotopic to the
identity and the independence from $(P^\bullet, \alpha)$ already proved.
identity and the independence of the choice of $f^\bullet$ we saw above.
\end{proof}


Expand Down

0 comments on commit d9f5975

Please sign in to comment.