Skip to content

Latest commit

 

History

History
254 lines (156 loc) · 9.17 KB

README.md

File metadata and controls

254 lines (156 loc) · 9.17 KB
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

kernelTan

NPM version Build Status Coverage Status

Compute the tangent of a double-precision floating-point number on [-π/4, π/4].

Usage

import kernelTan from 'https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-kernel-tan@esm/index.mjs';

kernelTan( x, y, k )

Computes the tangent of a double-precision floating-point number on [-π/4, π/4].

var out = kernelTan( 3.141592653589793/4.0, 0.0, 1 );
// returns ~1.0

out = kernelTan( 3.141592653589793/6.0, 0.0, 1 );
// returns ~0.577

out = kernelTan( 0.664, 5.288e-17, 1 );
// returns ~0.783

If k = 1, the function returns tan(x+y). To return the negative inverse -1/tan(x+y), set k = -1.

var out = kernelTan( 3.141592653589793/4.0, 0.0, -1 );
// returns ~-1.0

If either x or y is NaN, the function returns NaN.

var out = kernelTan( NaN, 0.0, 1 );
// returns NaN

out = kernelTan( 3.0, NaN, 1 );
// returns NaN

out = kernelTan( NaN, NaN, 1 );
// returns NaN

Notes

Examples

<!DOCTYPE html>
<html lang="en">
<body>
<script type="module">

import linspace from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-base-linspace@esm/index.mjs';
var binomial = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/random-base-binomial' ).factory;
import PI from 'https://cdn.jsdelivr.net/gh/stdlib-js/constants-float64-pi@esm/index.mjs';
import kernelTan from 'https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-kernel-tan@esm/index.mjs';

var x = linspace( -PI/4.0, PI/4.0, 100 );
var rbinom = binomial( 1, 0.5 );

var descr;
var i;
var k;

for ( i = 0; i < x.length; i++ ) {
    k = rbinom();
    descr = ( k === 1 ) ? 'tan(%d) = %d' : '-1/tan(%d) = %d';
    console.log( descr, x[ i ], kernelTan( x[ i ], 0.0, k ) );
}

</script>
</body>
</html>

See Also


Notice

This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


Copyright

Copyright © 2016-2024. The Stdlib Authors.