Reference implementation of the Symmetric Gradient Domain Machine Learning model
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.

Symmetric Gradient Domain Machine Learning (sGDML)


  • Python 2.7
  • NumPy (>=1.13.0)
  • SciPy

Getting started

Clone the repository

git clone

cd sGDML

...or update your local copy

git pull origin master


pip install -e .

Reconstruct your first force field dataset ethanol

sgdml all ethanol.npz 200 1000 5000

Query a force field

import numpy as np
from sgdml.predict import GDMLPredict
from sgdml.utils import io

r,_ = io.read_xyz('examples/geometries/') # 9 atoms
print r.shape # (1,27)

model = np.load('models/ethanol.npz')
gdml = GDMLPredict(model)
e,f = gdml.predict(r)
print e.shape # (1,)
print f.shape # (1,27)


  • [1] Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, Igor, Schütt, K. T., Müller, K.-R., Machine Learning of Accurate Energy-conserving Molecular Force Fields. Science Advances, 3(5), e1603015 (2017)

  • [2] Chmiela, S., Sauceda, H., Müller, K.-R., & Tkatchenko, A., Towards Exact Molecular Dynamics Simulations with Machine-Learned Force Fields. arXiv preprint, 1802.09238 (2018)