Skip to content

stevenmiller888/mind

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mind Logo

CircleCI

A flexible neural network library for Node.js and the browser. Check out a live demo of a movie recommendation engine built with Mind.

Features

  • Vectorized - uses a matrix implementation to process training data
  • Configurable - allows you to customize the network topology
  • Pluggable - download/upload minds that have already learned

Installation

$ yarn add node-mind

Usage

const Mind = require('node-mind');

/**
 * Letters.
 *
 * - Imagine these # and . represent black and white pixels.
 */

const a = character(
  '.#####.' +
  '#.....#' +
  '#.....#' +
  '#######' +
  '#.....#' +
  '#.....#' +
  '#.....#'
)

const b = character(
  '######.' +
  '#.....#' +
  '#.....#' +
  '######.' +
  '#.....#' +
  '#.....#' +
  '######.'
)

const c = character(
  '#######' +
  '#......' +
  '#......' +
  '#......' +
  '#......' +
  '#......' +
  '#######'
)

/**
 * Learn the letters A through C.
 */

const mind = new Mind({ activator: 'sigmoid' })
  .learn([
    { input: a, output: map('a') },
    { input: b, output: map('b') },
    { input: c, output: map('c') }
  ])

/**
 * Predict the letter C, even with a pixel off.
 */

const result = mind.predict(character(
  '#######' +
  '#......' +
  '#......' +
  '#......' +
  '#......' +
  '##.....' +
  '#######'
))

console.log(result) // ~ 0.5

/**
 * Turn the # into 1s and . into 0s.
 */

function character(string) {
  return string
    .trim()
    .split('')
    .map(integer)

  function integer(symbol) {
    if ('#' === symbol) return 1
    if ('.' === symbol) return 0
  }
}

/**
 * Map letter to a number.
 */

function map(letter) {
  if (letter === 'a') return [ 0.1 ]
  if (letter === 'b') return [ 0.3 ]
  if (letter === 'c') return [ 0.5 ]
  return 0
}

Plugins

Use plugins created by the Mind community to configure pre-trained networks that can go straight to making predictions.

Here's a cool example of the way you could use a hypothetical mind-ocr plugin:

const Mind = require('node-mind')
const ocr = require('mind-ocr')

const mind = Mind()
  .upload(ocr)
  .predict(
    '.#####.' +
    '#.....#' +
    '#.....#' +
    '#######' +
    '#.....#' +
    '#.....#' +
    '#.....#'
  )

To create a plugin, simply call download on your trained mind:

const Mind = require('node-mind')

const mind = Mind()
  .learn([
    { input: [0, 0], output: [ 0 ] },
    { input: [0, 1], output: [ 1 ] },
    { input: [1, 0], output: [ 1 ] },
    { input: [1, 1], output: [ 0 ] }
  ]);

const xor = mind.download()

Here's a list of available plugins:

API

Mind(options)

Create a new instance of Mind that can learn to make predictions.

The available options are:

  • activator: the activation function to use, sigmoid or htan
  • learningRate: the speed at which the network will learn
  • hiddenUnits: the number of units in the hidden layer/s
  • iterations: the number of iterations to run
  • hiddenLayers: the number of hidden layers

.learn()

Learn from training data:

mind.learn([
  { input: [0, 0], output: [ 0 ] },
  { input: [0, 1], output: [ 1 ] },
  { input: [1, 0], output: [ 1 ] },
  { input: [1, 1], output: [ 0 ] }
])

.predict()

Make a prediction:

mind.predict([0, 1])

.download()

Download a mind:

const xor = mind.download()

.upload()

Upload a mind:

mind.upload(xor)

.on()

Listen for the 'data' event, which is fired with each iteration:

mind.on('data', (iteration, errors, results) => {
  // ...
})

Releasing / Publishing

CircleCI will handle publishing to npm. To cut a new release, just do:

$ git changelog --tag <version>
$ vim package.json # enter <version>
$ git release <version>

Where <version> follows the semver spec.

Note

If you're interested in learning more, I wrote a blog post on how to build your own neural network:

Also, here are some fantastic libraries you can check out:

License

MIT


stevenmiller888.github.io  ·  GitHub @stevenmiller888  ·  Twitter @stevenmiller888