Skip to content
MLSP feature learning for the AVA aesthetics database
Jupyter Notebook
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
images
metadata
models
.gitattributes
LICENSE
README.md
extract_mlsp.ipynb
predict_mlsp_wide.ipynb
train_mlsp_narrow.ipynb
train_mlsp_narrow_aug.ipynb
train_mlsp_wide.ipynb

README.md

MLSP feature learning on AVA

This is part of the code for the paper "Effective Aesthetics Prediction with Multi-level Spatially Pooled Features". Please cite the following paper if use the code:

@inproceedings{hosu2019effective,
  title={Effective Aesthetics Prediction with Multi-level Spatially Pooled Features},
  author={Hosu, Vlad and Goldlucke, Bastian and Saupe, Dietmar},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9375--9383},
  year={2019}}

Multi-level Spatially-Pooled (MLSP) features extracted from ImageNet pre-trained Inception-type networks are used to train aesthetics score (MOS) predictors on the Aesthetic Visual Analysis (AVA) database. The code shows how to train models based on both narrow and wide MLSP features. Several fully trained models are included, together with demos on how to apply them on new images. The models are stored with git LFS, and they can be downloaded from here as well. The included notebooks rely on the kutils library.

Overview

Demo Python 2.7 notebooks:

extract_mlsp.ipynb:

  • Extract MLSP features from AVA images and save them to HDF5 files; allows storing per image augmentions.

train_mlsp_narrow.ipynb, train_mlsp_narrow_aug.ipynb

  • Train on narrow MLSP features (1×1×16k) from InceptionResNet-v2 with and without augmentation applied before storing features (crops, flips).

train_mlsp_wide.ipynb

  • Train on wide MLSP features (5×5×16k) from InceptionResNet-v2 without augmentation.

predict_mlsp_wide.ipynb (open on google colab)

  • Assembles pre-trained model that predicts scores directly from images (rather than saved MLSP features).

metadata/AVA_data_official_test.csv

  • Contains image meta-data, including file names, corresponding scores, resolutions and the membership in the test/validation/train split.
You can’t perform that action at this time.