Skip to content

Latest commit

 

History

History
67 lines (44 loc) · 2.77 KB

mvn.rst

File metadata and controls

67 lines (44 loc) · 2.77 KB

Multivariate Gaussian Distributions

Defining a Gaussian process can be thought of as providing a way to create arbitrary Multivariate Guassian Distributions (aka Multivariate Normal Distributions). The steps to fit and predict with a Gaussian process can then be thought of mostly as manipulations of Multivariate Gaussians. Here we provide a brief overview of some manipulations.

Starting with a univariate Gaussian,

\mathbf{z} \sim \mathcal{N}\left(0, 1\right)

we can add a scalar,

\mathbf{z} + a \sim \mathcal{N}\left(a, 1\right)

multiply by a scalar,

a \mathbf{z} \sim \mathcal{N}\left(0, a^2\right)

or add two distributions,

\mathcal{N}\left(m_a, \sigma_a^2\right) + \mathcal{N}\left(m_b, \sigma_b^2\right) = \mathcal{N}\left(m_a + m_b, \sigma_a^2 + \sigma_b^2\right).

Similar operations exist for multivariate Gaussian distributions, we can add a vector, \mu \in \mathcal{R}^n

\mathcal{N}\left(0, I_{nn}\right) + \mu = \mathcal{N}\left(\mu, I\right)

multiply by a matrix, A \in \mathbb{R}^{m, n}

A \mathcal{N}\left(0, I\right) = \mathcal{N}\left(0, A A^T\right)

add two distributions,

\mathcal{N}\left(\mu_a, \Sigma_a\right) + \mathcal{N}\left(\mu_b, \Sigma_b\right) = \mathcal{N}\left(\mu_a + \mu_b, \Sigma_a + \Sigma_b\right)

Adding and multiplying distributions can be useful, but the most important operation for Gaussian processes is the conditional distribution. Start by splitting a multivariate Gaussian distribution into two variables,

\label{eq:ab_prior}
\left[\begin{array}{c}
  \mathbf{a}
 \\
  \mathbf{b}
 \end{array}\right] \sim \mathcal{N}\left(
\begin{bmatrix} \mu_a \\ \mu_b \end{bmatrix},
\left[
\begin{bmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{bmatrix}\right]\right)

notice that the two random variables, \mathbf{a} and \mathbf{b}, are correlated with each other. The conditional distribution, \mathbf{a} |b, gives us the distribution of \mathbf{a} if we knew the value of \mathbf{b} = b,

\mathbf{a}
|b \sim \mathcal{N}\left(\mu_a + \Sigma_{ab} \Sigma_{bb}^{-1}\left(b - \mu_b\right) \hspace{0.1cm}, \hspace{0.1cm} \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba} \right)

Here we’ve started with a joint prior distribution of \mathbf{a} and \mathbf{b} and found the posterior distribution, \mathbf{a}|b, of \mathbf{a} given \mathbf{b} = b. These identities and more can be found in the The Matrix Cookbook which is an extremely valuable resource for linear algebra in general.