Skip to content

Commit

Permalink
Add FKD support
Browse files Browse the repository at this point in the history
  • Loading branch information
szq0214 committed Dec 5, 2021
1 parent 4f4d9e2 commit 0787838
Show file tree
Hide file tree
Showing 7 changed files with 510 additions and 18 deletions.
296 changes: 296 additions & 0 deletions FKD_train.py
@@ -0,0 +1,296 @@
#!/usr/bin/env python3
"""Script to train a model through soft labels on ImageNet's train set."""

import argparse
import logging
import pprint
import os
import sys
import time
import math
import numpy as np

import torch
from torch import nn

from loss import discriminatorLoss

import imagenet
from models import model_factory
from models import discriminator
import opts
import test
import utils
from utils_FKD import Recover_soft_label

def parse_args(argv):
"""Parse arguments @argv and return the flags needed for training."""
parser = argparse.ArgumentParser(description=__doc__, allow_abbrev=False)

group = parser.add_argument_group('General Options')
opts.add_general_flags(group)

group = parser.add_argument_group('Dataset Options')
opts.add_dataset_flags(group)

group = parser.add_argument_group('Model Options')
opts.add_model_flags(group)

group = parser.add_argument_group('Soft Label Options')
opts.add_teacher_flags(group)

group = parser.add_argument_group('Training Options')
opts.add_training_flags(group)

group = parser.add_argument_group('CutMix Training Options')
opts.add_cutmix_training_flags(group)

args = parser.parse_args(argv)

return args


class LearningRateRegime:
"""Encapsulates the learning rate regime for training a model.
Args:
@intervals (list): A list of triples (start, end, lr). The intervals
are inclusive (for start <= epoch <= end, lr will be used). The
start of each interval must be right after the end of its previous
interval.
"""

def __init__(self, regime):
if len(regime) % 3 != 0:
raise ValueError("Regime length should be devisible by 3.")
intervals = list(zip(regime[0::3], regime[1::3], regime[2::3]))
self._validate_intervals(intervals)
self.intervals = intervals
self.num_epochs = intervals[-1][1]

@classmethod
def _validate_intervals(cls, intervals):
if type(intervals) is not list:
raise TypeError("Intervals must be a list of triples.")
elif len(intervals) == 0:
raise ValueError("Intervals must be a non empty list.")
elif intervals[0][0] != 1:
raise ValueError("Intervals must start from 1: {}".format(intervals))
elif any(end < start for (start, end, lr) in intervals):
raise ValueError("End of intervals must be greater or equal than their"
" start: {}".format(intervals))
elif any(intervals[i][1] + 1 != intervals[i + 1][0]
for i in range(len(intervals) - 1)):
raise ValueError("Start of each each interval must be the end of its "
"previous interval plus one: {}".format(intervals))

def get_lr(self, epoch):
for (start, end, lr) in self.intervals:
if start <= epoch <= end:
return lr
raise ValueError("Invalid epoch {} for regime {!r}".format(
epoch, self.intervals))


def _set_learning_rate(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr

def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
milestone = math.ceil(milestone / args.num_crops)
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr

def _get_learning_rate(optimizer):
return max(param_group['lr'] for param_group in optimizer.param_groups)


def train_for_one_epoch(model, g_loss, discriminator_loss, train_loader, optimizer, epoch_number, args):
model.train()
g_loss.train()

data_time_meter = utils.AverageMeter()
batch_time_meter = utils.AverageMeter()
g_loss_meter = utils.AverageMeter(recent=100)
d_loss_meter = utils.AverageMeter(recent=100)
top1_meter = utils.AverageMeter(recent=100)
top5_meter = utils.AverageMeter(recent=100)

timestamp = time.time()
for i, (images, labels, soft_labels) in enumerate(train_loader):
batch_size = args.batch_size

# Record data time
data_time_meter.update(time.time() - timestamp)

images = torch.cat(images, dim=0)
soft_labels = torch.cat(soft_labels, dim=0)
labels = torch.cat(labels, dim=0)

if args.soft_label_type == 'ori':
soft_labels = soft_labels.cuda()
else:
soft_labels = Recover_soft_label(soft_labels, args.soft_label_type, args.num_classes)
soft_labels = soft_labels.cuda()

if utils.is_model_cuda(model):
images = images.cuda()
labels = labels.cuda()

if args.w_cutmix == True:
r = np.random.rand(1)
if args.beta > 0 and r < args.cutmix_prob:
# generate mixed sample
lam = np.random.beta(args.beta, args.beta)
rand_index = torch.randperm(images.size()[0]).cuda()
target_a = soft_labels
target_b = soft_labels[rand_index]
bbx1, bby1, bbx2, bby2 = utils.rand_bbox(images.size(), lam)
images[:, :, bbx1:bbx2, bby1:bby2] = images[rand_index, :, bbx1:bbx2, bby1:bby2]
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (images.size()[-1] * images.size()[-2]))

# Forward pass, backward pass, and update parameters.
output = model(images)
# output, soft_label, soft_no_softmax = outputs
if args.w_cutmix == True:
g_loss_output1 = g_loss((output, target_a), labels)
g_loss_output2 = g_loss((output, target_b), labels)
else:
g_loss_output = g_loss((output, soft_labels), labels)
if args.use_discriminator_loss:
# Our stored label is "after softmax", this is slightly different from original MEAL V2
# that used probibilaties "before softmax" for the discriminator.
if args.w_cutmix == True:
d_loss_value = discriminator_loss([output], [target_a]) * lam + discriminator_loss([output], [target_b]) * (1 - lam)
else:
d_loss_value = discriminator_loss([output], [soft_labels])

# Sometimes loss function returns a modified version of the output,
# which must be used to compute the model accuracy.
if args.w_cutmix == True:
if isinstance(g_loss_output1, tuple):
g_loss_value1, output1 = g_loss_output1
g_loss_value2, output2 = g_loss_output2
g_loss_value = g_loss_value1 * lam + g_loss_value2 * (1 - lam)
else:
g_loss_value = g_loss_output1 * lam + g_loss_output2 * (1 - lam)
else:
if isinstance(g_loss_output, tuple):
g_loss_value, output = g_loss_output
else:
g_loss_value = g_loss_output

if args.use_discriminator_loss:
loss_value = g_loss_value + d_loss_value
else:
loss_value = g_loss_value

loss_value.backward()

# Update parameters and reset gradients.
optimizer.step()
optimizer.zero_grad()

# Record loss and model accuracy.
g_loss_meter.update(g_loss_value.item(), batch_size)
d_loss_meter.update(d_loss_value.item(), batch_size)

top1, top5 = utils.topk_accuracy(output, labels, recalls=(1, 5))
top1_meter.update(top1, batch_size)
top5_meter.update(top5, batch_size)

# Record batch time
batch_time_meter.update(time.time() - timestamp)
timestamp = time.time()

if i%20 == 0:
logging.info(
'Epoch: [{epoch}][{batch}/{epoch_size}]\t'
'Time {batch_time.value:.2f} ({batch_time.average:.2f}) '
'Data {data_time.value:.2f} ({data_time.average:.2f}) '
'G_Loss {g_loss.value:.3f} {{{g_loss.average:.3f}, {g_loss.average_recent:.3f}}} '
'D_Loss {d_loss.value:.3f} {{{d_loss.average:.3f}, {d_loss.average_recent:.3f}}} '
'Top-1 {top1.value:.2f} {{{top1.average:.2f}, {top1.average_recent:.2f}}} '
'Top-5 {top5.value:.2f} {{{top5.average:.2f}, {top5.average_recent:.2f}}} '
'LR {lr:.5f}'.format(
epoch=epoch_number, batch=i + 1, epoch_size=len(train_loader),
batch_time=batch_time_meter, data_time=data_time_meter,
g_loss=g_loss_meter, d_loss=d_loss_meter, top1=top1_meter, top5=top5_meter,
lr=_get_learning_rate(optimizer)))
# Log the overall train stats
logging.info(
'Epoch: [{epoch}] -- TRAINING SUMMARY\t'
'Time {batch_time.sum:.2f} '
'Data {data_time.sum:.2f} '
'G_Loss {g_loss.average:.3f} '
'D_Loss {d_loss.average:.3f} '
'Top-1 {top1.average:.2f} '
'Top-5 {top5.average:.2f} '.format(
epoch=epoch_number, batch_time=batch_time_meter, data_time=data_time_meter,
g_loss=g_loss_meter, d_loss=d_loss_meter, top1=top1_meter, top5=top5_meter))


def save_checkpoint(checkpoints_dir, model, optimizer, epoch):
model_state_file = os.path.join(checkpoints_dir, 'model_state_{:02}.pytar'.format(epoch))
optim_state_file = os.path.join(checkpoints_dir, 'optim_state_{:02}.pytar'.format(epoch))
torch.save(model.state_dict(), model_state_file)
torch.save(optimizer.state_dict(), optim_state_file)


def create_optimizer(model, discriminator_parameters, momentum=0.9, weight_decay=0):
# Get model parameters that require a gradient.
parameters = [{'params': model.parameters()}, discriminator_parameters]
optimizer = torch.optim.SGD(parameters, lr=0,
momentum=momentum, weight_decay=weight_decay)
return optimizer

def create_discriminator_criterion(args):
d = discriminator.Discriminator(outputs_size=1000, K=8).cuda()
d = torch.nn.DataParallel(d)
update_parameters = {'params': d.parameters(), "lr": args.d_lr}
discriminators_criterion = discriminatorLoss(d).cuda()
if len(args.gpus) > 1:
discriminators_criterion = torch.nn.DataParallel(discriminators_criterion, device_ids=args.gpus)
return discriminators_criterion, update_parameters

def main(argv):
"""Run the training script with command line arguments @argv."""
args = parse_args(argv)
utils.general_setup(args.save, args.gpus)

logging.info("Arguments parsed.\n{}".format(pprint.pformat(vars(args))))

# convert to TRUE number of loading-images since we use multiple crops from the same image within a minbatch
args.batch_size = math.ceil(args.batch_size / args.num_crops)

# Create the train and the validation data loaders.
train_loader = imagenet.get_train_loader_FKD(args.imagenet, args.batch_size,
args.num_workers, args.image_size, args.num_crops, args.softlabel_path)
val_loader = imagenet.get_val_loader(args.imagenet, args.batch_size,
args.num_workers, args.image_size)
# Create model with optional teachers.
model, loss = model_factory.create_model(
args.model, args.student_state_file, args.gpus, args.teacher_model,
args.teacher_state_file, True)
logging.info("Model:\n{}".format(model))

discriminator_loss, update_parameters = create_discriminator_criterion(args)

optimizer = create_optimizer(model, update_parameters, args.momentum, args.weight_decay)

for epoch in range(args.start_epoch, args.epochs, args.num_crops):
adjust_learning_rate(optimizer, epoch, args)
train_for_one_epoch(model, loss, discriminator_loss, train_loader, optimizer, epoch, args)
test.test_for_one_epoch(model, loss, val_loader, epoch)
save_checkpoint(args.save, model, optimizer, epoch)


if __name__ == '__main__':
main(sys.argv[1:])
18 changes: 18 additions & 0 deletions README.md
Expand Up @@ -23,6 +23,24 @@ If you find our code is helpful for your research, please cite:

## News

**[Dec. 5, 2021]** **New:** Add [FKD](https://arxiv.org/abs/2112.01528) training support. We highly recommend to use FKD for training MEAL V2 models, which will be 2~4x faster while reaching similar accuracy.

- Download our [soft label](http://zhiqiangshen.com/projects/FKD/index.html) for MEAL V2.
- run script/FKD_train.sh with the desired model architecture and the path to the ImageNet dataset and soft label, for example:

```shell
# 224 x 224 ResNet-50
python FKD_train.sh --save MEAL_V2_resnet50_224 \
--batch-size 512 -j 48 \
--model resnet50 --epochs 180 \
--teacher-model gluon_senet154,gluon_resnet152_v1s \
--imagenet [imagenet-folder with train and val folders] \
--num_crops 8 --soft_label_type marginal_smoothing_k5 \
--softlabel_path [path of soft label] \
--schedule 100 240 --use-discriminator-loss
```
Add `--cos` if you would like to train with cosine learning rate.

**New:** Basically, adding back tricks (cosine *lr*, etc.) into MEAL V2 can consistently improve the accuracy:

<div align=center>
Expand Down
22 changes: 22 additions & 0 deletions imagenet.py
Expand Up @@ -6,13 +6,33 @@
from torchvision import datasets as torch_datasets
from torchvision import transforms

from utils_FKD import RandomResizedCrop_FKD,RandomHorizontalFlip_FKD,ImageFolder_FKD,Compose_FKD
from torchvision.transforms import InterpolationMode

def get_train_loader(imagenet_path, batch_size, num_workers, image_size):
train_dataset = ImageNet(imagenet_path, image_size, is_train=True)
return data_utils.DataLoader(
train_dataset, shuffle=True, batch_size=batch_size, pin_memory=True,
num_workers=num_workers)

def get_train_loader_FKD(imagenet_path, batch_size, num_workers, image_size, num_crops, softlabel_path):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = ImageFolder_FKD(
num_crops=num_crops,
softlabel_path=softlabel_path,
root=os.path.join(imagenet_path, 'train'),
transform=Compose_FKD(transforms=[
RandomResizedCrop_FKD(size=224,
scale=(0.08, 1),
interpolation='bilinear'),
RandomHorizontalFlip_FKD(),
transforms.ToTensor(),
normalize,
]))
return data_utils.DataLoader(
train_dataset, shuffle=True, batch_size=batch_size, pin_memory=True,
num_workers=num_workers)

def get_val_loader(imagenet_path, batch_size, num_workers, image_size):
val_dataset = ImageNet(imagenet_path, image_size, is_train=False)
Expand Down Expand Up @@ -50,3 +70,5 @@ def __init__(self, root_dir, im_size, is_train):
transforms.Normalize(ImageNet.MEAN, ImageNet.STD),
])
super().__init__(root_dir, transform=transform)


28 changes: 16 additions & 12 deletions models/model_factory.py
Expand Up @@ -59,17 +59,21 @@ def teachers(teachers=['resnet50'], state_file=None):


def create_model(model_name, student_state_file=None, gpus=[], teacher=None,
teacher_state_file=None):
# model = _create_model(model_name)
model = _create_checkpoint_model(model_name, student_state_file)
model.LR_REGIME = [1, 100, 0.01, 101, 300, 0.001] # LR_REGIME
if teacher is not None:
# assert teacher_state_file is not None, "Teacher state is None."

teacher = teachers(teacher.split(","), teacher_state_file)
model = teacher_wrapper.ModelDistillationWrapper(model, teacher)
teacher_state_file=None, FKD=True):
if FKD:
model = _create_checkpoint_model(model_name, student_state_file)
loss = kd_loss.KLLoss()
return model, loss
else:
loss = nn.CrossEntropyLoss()

return model, loss
model = _create_checkpoint_model(model_name, student_state_file)
model.LR_REGIME = [0, 100, 0.01, 101, 300, 0.001] # LR_REGIME
if teacher is not None:
# assert teacher_state_file is not None, "Teacher state is None."

teacher = teachers(teacher.split(","), teacher_state_file)
model = teacher_wrapper.ModelDistillationWrapper(model, teacher)
loss = kd_loss.KLLoss()
else:
loss = nn.CrossEntropyLoss()

return model, loss

0 comments on commit 0787838

Please sign in to comment.