Skip to content

tankche1/IDeMe-Net

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image Deformation Meta-Networks for One-Shot Learning

A PyTorch implementation of "Image Deformation Meta-Networks for One-Shot Learning"(CVPR 2019 Oral).

Image Deformation Meta-Networks for One-Shot Learning,
Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu, Martial Hebert

Installation

python=2.7
pytorch=0.4.0

Datasets

The data split is from Semantic Feature Augmentation in Few-shot Learning

Please put the data in:
/home/yourusername/data/miniImagenet

The images are put in 
.../miniImagenet/images
such as:miniImagenet\images\n0153282900000006.jpg
We provide the data split in ./datasplit/,please put them at 
.../miniImagenet/train.csv
.../miniImagenet/test.csv
.../miniImagenet/val.csv

Train & Test

Notice that we train the model on 4 Titan X. 42000MB GPU memory is required or may cause CUDA out of memory.

# First, we fix the deformation sub-network and train the embedding sub-network with randomly deformed images

# We provide softRandom.t7 as the embedding sub-network
# if you want to train your own, run python classification.py --tensorname yournetworkname


# Then, we fix the embedding sub-network and learn the deformation sub-network 

CUDA_VISIBLE_DEVICES=0,1,2,3 python onlyBasetwoLoss.py --network softRandom --shots 5 --augnum 5 --fixCls 1 --tensorname metaNet_5shot --chooseNum 30 

# If you want to further improve, then fix one sub-network and iteratively train the other. 

# update cls
CUDA_VISIBLE_DEVICES=0,1,2,3 python onlyBasetwoLoss.py --network softRandom --shots 5 --augnum 5 --fixCls 0 --fixAttention 1 --tensorname metaNet_5shot_round2 --chooseNum 30 --GNet metaNet_5shot 

We also provide our model: metaNet_1shot.t7 and metaNet_5shot.t7 in ./models

You can use --GNet metaNet_1shot to load the model.


License

IDeMe-Net is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{chen2019image,
  title={Image deformation meta-networks for one-shot learning},
  author={Chen, Zitian and Fu, Yanwei and Wang, Yu-Xiong and Ma, Lin and Liu, Wei and Hebert, Martial},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={8680--8689},
  year={2019}
}

About

A PyTorch implementation of "Image Deformation Meta-Networks for One-Shot Learning"(CVPR 2019 Oral).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages