Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README

Source code for our paper:

Aggregating and Predicting Sequence Labels from Crowd Annotations
An Thanh Nguyen, Byron C. Wallace, Junyi Jessy Li, Ani Nenkova and Matthew Lease
Association for Computational Linguistics (ACL)


The crowd NER dataset is from Rodrigues et al. (2014):
http://www.fprodrigues.com/software/crf-ma-sequence-labeling-with-multiple-annotators/

For LSTM-Crowd, our implementation extends Lample et al. (2016): https://github.com/glample/tagger

Data for the Biomedical IE task: https://github.com/yinfeiy/PICO-data

-------------------------------------------------------------------------

Requirements: Python 2

Installing required packages using virtualenv (so it does not collide with system dependencies)

$ virtualenv env-python2 --python=python2
$ source env-python2/bin/activate
(env-python2) $ pip install sklearn numpy nltk scipy python-crfsuite matplotlib

To run the experiment on NER Task 1, extract the Rodrigues et al. data in task1.zip then execute: 

python hmm.py -i task1/val/ -o output.txt

to run on the validation set or 

python hmm.py -i task1/test/ -o output.txt

to run on the test set.

Execute python hmm.py --help for more options.

-------------------------------------------------------------------------
References:

Rodrigues, Filipe, Francisco Pereira, and Bernardete Ribeiro. "Sequence labeling with multiple annotators." Machine Learning 95.2 (2014): 165-181.

Lample, Guillaume, et al. "Neural architectures for named entity recognition." arXiv preprint arXiv:1603.01360 (2016).

About

No description, website, or topics provided.

Resources

License

Releases

No releases published

Packages

No packages published
You can’t perform that action at this time.